Caffeine may block inflammation linked to mild cognitive impairment

October 9, 2012

Recent studies have linked caffeine consumption to a reduced risk of Alzheimer's disease, and a new University of Illinois study may be able to explain how this happens.

"We have discovered a novel signal that activates the brain-based inflammation associated with , and caffeine appears to block its activity. This discovery may eventually lead to drugs that could reverse or inhibit ," said Gregory Freund, a professor in the U of I's College of Medicine and a member of the U of I's Division of .

Freund's team examined the effects of caffeine on in two groups of mice—one group given caffeine, the other receiving none. The two groups were then exposed to hypoxia, simulating what happens in the brain during an interruption of breathing or blood flow, and then allowed to recover.

The caffeine-treated mice recovered their ability to form a new memory 33 percent faster than the non-caffeine-treated mice. In fact, caffeine had the same anti-inflammatory effect as blocking IL-1 signaling. IL-1 is a critical player in the inflammation associated with many neurodegenerative diseases, he said.

"It's not surprising that the insult to the brain that the mice experienced would cause learning memory to be impaired. But how does that occur?" he wondered.

The scientists noted that the hypoxic episode triggered the release of adenosine by .

"Your cells are little powerhouses, and they run on a fuel called ATP that's made up of molecules of adenosine. When there's damage to a cell, adenosine is released," he said.

Just as gasoline leaking out of a tank poses a danger to everything around it, adenosine leaking out of a cell poses a danger to its environment, he noted.

The extracellular adenosine activates the enzyme caspase-1, which triggers production of the IL-1β, a critical player in inflammation, he said.

"But caffeine blocks all the activity of adenosine and inhibits caspase-1 and the inflammation that comes with it, limiting damage to the brain and protecting it from further injury," he added.

Caffeine's ability to block adenosine receptors has been linked to cognitive improvement in certain neurodegenerative diseases and as a protectant against Alzheimer's disease, he said.

"We feel that our foot is in the door now, and this research may lead to a way to reverse early cognitive impairment in the brain. We already have drugs that target certain receptors. Our work now is to determine which receptor is the most important and use a specific antagonist to that receptor," he said.

Explore further: Finding the roots of memory impairment from sleep deprivation

More information: The study appears in the Journal of Neuroscience and can be viewed online at www.jneurosci.org/content/32/40/13945.full

Related Stories

Finding the roots of memory impairment from sleep deprivation

June 10, 2011
Anyone who has pulled an all-nighter knows there is a price to be paid the next day: trouble focusing, a fuzzy memory and other cognitive impairments. For students, these impairments might just result in a bad grade. But ...

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Strategy might prevent infections in patients with spinal cord injuries

September 19, 2017
New research led by The Ohio State University Wexner Medical Center found a potential therapeutic strategy to prevent infections in patients with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.