Researchers test new gene therapy method in human cells

October 24, 2012, Oregon Health & Science University

Oregon Health & Science University's development of a new gene therapy method to prevent certain inherited diseases has reached a significant milestone. Researchers at the university's Oregon National Primate Research Center and the OHSU Department of Obstetrics & Gynecology have successfully demonstrated their procedure in human cells. It's believed that this research, along with other efforts, will pave the way for future clinical trials in human subjects.

The research results are online Wednesday, Oct. 24, in the highly respected journal Nature. Dr. Mitalipov also will present the results of his research at the American Society for Reproductive Medicine Conference in San Diego Oct. 24'.

The OHSU method was initially devised through research in nonhuman primates led by Shoukhrat Mitalipov, Ph.D., associate scientist in the Division of Reproductive & Developmental Sciences at ONPRC, Oregon Stem Cell Center and OHSU School of Medicine departments of Obstetrics and Gynecology and Molecular and Medical Genetics.

The procedure was specifically developed to prevent diseases related to gene defects in the cell mitochondria. Mitalipov's previous work was published in the August 2009 edition of Nature. In the current study, Mitalipov, in collaboration with Paula Amato, M.D., associate professor of obstetrics and gynecology in the OHSU Center for Women's Health, demonstrated efficacy of this therapy in human gametes and embryos.

"Cell mitochondria contain genetic material just like the cell nucleus and these genes are passed from mother to infant," explained Mitalipov. "When certain mutations in mitochondrial DNA are present, a child can be born with severe conditions, including diabetes, deafness, eye disorders, gastrointestinal disorders, heart disease, dementia and several other neurological diseases. Because mitochondrial-based genetic diseases are passed from one generation to the next, the risk of disease is often quite clear. The goal of this research is to develop a therapy to prevent transmission of these disease-causing gene mutations."

To conduct this research, Mitalipov and his colleagues obtained 106 human egg cells from study volunteers recruited through OHSU's Division of Fertility and Reproductive Endocrinology. The researchers then used a method developed in previous nonhuman primate studies, to transfer the nucleus from one cell to another. In effect, the researchers "swapped out" the cell cytoplasm, which contains the mitochondria. The egg cells were then fertilized to determine whether the transfer was a success and whether the cells developed normally. Upon inspection, it was demonstrated that it was possible to successfully replace mitochondrial DNA using this method.

"Using this process, we have shown that mutated DNA from the mitochondria can be replaced with healthy copies in ," explained Mitalipov. "While the human cells in our study only allowed to develop to the embryonic stem cell stage, this research shows that this gene therapy method may well be a viable alternative for preventing devastating diseases passed from mother to infant."

The current Nature paper also expanded upon the previously reported nonhuman primate work by demonstrating that the method was possible using frozen egg cells. Mitochondria were replaced in a frozen/thawed monkey egg cell, resulting in the birth of a healthy baby monkey named Chrysta.

The second portion of the study, which was completed at ONPRC, is also considered an important achievement because egg cells only remain viable for a short period of time after they are harvested from a donor. Therefore, for this therapy to be a viable option in the clinic, preservation through freezing likely is necessary so that both the donor cell and a mother's cell are viable at the time of the procedure.

While this form of therapy has yet to be approved in the United States, the United Kingdom is seriously considering its use for treating human patients at risk for mitochondria-based disease. It's believed that this most recent breakthrough, combined with earlier animal studies, will help inform that decision-making process.

Because the research involved the use of human egg cells and there are restrictions to the use of federal funding for some work in human egg cells, private funding was obtained to accomplish the work.

In addition, researchers consulted with ethicists and other experts within OHSU's Institutional Review Board and the OHSU Stem Cell Research Oversight Committee (OSCRO) prior to embarking on this research. The OSCRO reviews research involving human embryonic stem cells at OHSU to ensure that all federal and state regulations governing the conduct of stem cell research are met and that all human embryonic stem cell research is conducted in accordance with the general principles expressed in the National Academies' Guidelines for Human Embryonic Stem Cell Research. The OHSU IRB reviews biomedical and behavioral research that involves humans in order to protect the rights and welfare of the research subjects.

Explore further: Study shows how mitochondrial genes are passed from mother to child

Related Stories

Study shows how mitochondrial genes are passed from mother to child

May 3, 2012
Research conducted at the Oregon National Primate Research Center at Oregon Health & Science University helps answer some long-standing questions about how certain disease-causing gene mutations are inherited.

World's first chimeric monkeys are born

January 5, 2012
Researchers have produced the world's first chimeric monkeys. The bodies of these monkeys, which are normal and healthy, are composed of a mixture of cells representing as many as six distinct genomes. The advance holds great ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.