Genetic switch shuts down lung cancer tumors in mice

October 25, 2012

Yale researchers manipulated a tiny genetic switch and halted growth of aggressive lung cancer tumors in mice and even prevented tumors from forming.

The activation of a single managed to neutralize the effects of two of the most notorious genes in cancer's arsenal, suggesting it may have a role treating several forms of cancer, the researchers report in the Nov. 1 issue of the journal .

"This is pretty much the best pre-clinical data that show microRNAs can be effective in lung cancer treatment," said Frank Slack, professor of molecular, cellular & developmental biology, researcher for the Yale Cancer Center, and senior author of the paper. "These cancer genes are identical to ones found in many forms of human cancers and we are hopeful the microRNA will be of therapeutic benefit in human cancer."

Unlike drugs that act upon existing proteins, microRNAs are small pieces of genetic material that can shut down and turn off genes that produce the proteins. Slack and co-author Andrea Kasinski wanted to see if one of these microRNAs, miR-34, could block the actions of K-Ras and p53 genes, which promote proliferation and survival of cancer cells, respectively. Mice with these two mutant genes invariably develop tumors but were cancer-free when researchers activated miR-34. Also, tumor growth was halted in mice that were treated with miR-34 after they had developed cancer.

Explore further: Nanoparticles cut off 'addicted' tumors from source of their survival

Related Stories

Nanoparticles cut off 'addicted' tumors from source of their survival

May 28, 2012
(Medical Xpress) -- Yale biologists and engineers have designed drug-loaded nanoparticles that target the soft underbelly of many types of cancer — a tiny gene product that tumors depend upon to replicate and survive.

In cancer, molecular signals that recruit blood vessels also trigger metastasis

December 19, 2011
(Medical Xpress) -- Cancer cells are most deadly when they’re on the move — able not only to destroy whatever organ they are first formed in, but also to create colonies elsewhere in the body. New research has now ...

Recommended for you

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.