Inhibiting CaMKII enzyme activity could lead to new therapies for heart disease

October 11, 2012, University of Iowa

University of Iowa researchers have previously shown that an enzyme called CaM kinase II plays a pivotal role in the death of heart cells following a heart attack or other conditions that damage or stress heart muscle. Loss of beating heart cells is generally permanent and leads to heart failure, a serious, debilitating condition that affects 5.8 million people in the United States.

Now the UI team, led by Mark Anderson, M.D., Ph.D., professor and head of internal medicine at the UI Carver College of Medicine, has honed in on how CaM kinase II triggers heart cell death following , showing that the action takes place in the cells' energy-producing mitochondria. In animal tests, the team reports that blocking the enzyme can prevent heart cells from dying, and protects the animals from heart failure.

Mitochondrial are the cells' batteries, generating the energy cells need to work. In , energy produced by these small fuels each heartbeat. However, when the heart is stressed, for example during a heart attack, the mitochondria become leaky and non-functional, which triggers cell death and .

"We found that activity of the CaM kinase II enzyme in mitochondria promotes cell death when the heart is stressed," says Mei-ling Joiner, Ph.D., UI assistant professor of internal medicine and lead author of the study, which was published online Oct. 10 in the journal Nature. "The findings might help us advance treatment of heart diseases and reduce mortality after a heart attack."

The new study shows that activated CaM kinase II promotes leakiness of mitochondria and increases by allowing too much calcium to enter mitochondria. Specifically, the UI team found that CaM kinase II regulates calcium entry into mitochondria by modifying a special mitochondrial . Too much enzyme activity increased the amount of calcium flowing into mitochondria, and this calcium overload triggers cell death.

Using genetically modified mice, the team also showed that inhibiting CaM kinase II activity in mitochondria prevented the calcium overloading, reduced mitochondrial disruption, and protected the mice from heart cell death during heart attack.

These findings provide insight into molecular mechanisms for mitochondrial function and suggest that inhibiting the CaM kinase II enzyme in mitochondria could lead to new and more effective therapies for common forms of .

"Because mitochondria also play important roles in other diseases in brain and skeletal muscle, for example, our findings could also have broad implications for understanding and treating non-cardiac diseases," says Anderson, who also is director of the UI Cardiovascular Research Center.

Explore further: Study explains how heart attack can lead to heart rupture

Related Stories

Study explains how heart attack can lead to heart rupture

November 17, 2011
For people who initially survive a heart attack, a significant cause of death in the next few days is cardiac rupture -- literally, bursting of the heart wall.

DNA from heart's own cells plays role in heart failure by mistakenly activating immune system

April 25, 2012
DNA from the heart's own cells plays a role in heart failure by mistakenly activating the body's immune system, according to a study by British and Japanese researchers, co-funded by the British Heart Foundation (BHF). Scientists ...

Recommended for you

Biomechanical mapping method aids development of therapies for damaged heart tissue

January 23, 2018
Researchers have developed a new way to capture the detailed biomechanical properties of heart tissue. The high-resolution optical technique fills an important technology gap necessary to develop and test therapies that might ...

Researchers borrow from AIDS playbook to tackle rheumatic heart disease

January 22, 2018
Billions of US taxpayer dollars have been invested in Africa over the past 15 years to improve care for millions suffering from the HIV/AIDS epidemic; yet health systems on the continent continue to struggle. What if the ...

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.