New insights on control of pituitary hormone outside of brain has implications for breast cancer

October 1, 2012
Turning on Akt1 in breast epithelial cells (red, yellow) of a virgin mouse for 96 hours causes them to to terminally differentiate and produce milk (green, yellow). Nuclei are shown in blue. Credit: Chien-Chung Chen, Lewis Chodosh, Perelman School of Medicine, University of Pennsylvania

The hormone prolactin is produced by the pituitary gland in the brain and then travels via the bloodstream to cells throughout the body, where it exerts multiple reproductive and metabolic effects, most notably on the breast where it is the master regulator of lactation. In recent years researchers have found that prolactin is also produced by some tissues outside the brain, however little is known about the functions of extra-pituitary prolactin or how its production is regulated in these tissues.

Now, the laboratory of Lewis A. Chodosh, MD, PhD, chair of the Department of at the Perelman School of Medicine, University of Pennsylvania, reports in Genes & Development that activation of the PI3K-Akt oncogenic signaling pathway in the mammary glands of mice rapidly induces cells in the breast itself to produce prolactin. This, in turn, triggers Stat5 activation, mammary epithelial differentiation and milk production in virgin mice within a matter of hours.

"Remarkably, these changes occur in the absence of any of the complex hormonal changes or developmental programs that normally accompany pregnancy" explains Chodosh.

Consistent with a physiological role for prolactin outside of the brain, the Penn team found that mice bearing mutant Akt fail to activate Stat5 or initiate when they give birth due to an inability to synthesize and secrete prolactin in the mammary gland, despite normal levels of circulating prolactin in the blood.

These findings provide the first demonstration that the synthesis and secretion of mammary gland prolactin is regulated by PI3K-Akt signaling and identify a physiological function for extra-pituitary prolactin during a critical developmental stage that is essential for the survival of mammalian offspring.

What's more, prolactin has long been thought to play a role in human breast cancer, however this has typically been assumed to be due to circulating prolactin produced by the pituitary. Since the PI3K-Akt signaling pathway is commonly activated in human cancers, this new finding suggests the important possibility that prolactin produced by the breast itself may play a role in breast cancer. In fact, mammary prolactin has been detected in some human breast cancers. As such, investigators have proposed that prolactin produced by the mammary gland – rather than by the pituitary – may play a direct role in the development of breast cancer, for example by providing pro-growth or pro-survival signals to cancer cells in the breast. Accordingly, anti-cancer drugs aimed at blocking the effects of prolactin are currently under development.

"Since the PI3K-Akt pathway is one of the most commonly activated oncogenic pathways in human cancer, its identification as an upstream regulator of prolactin production in the mammary gland has intriguing potential implications for understanding the pathology of human breast cancer and as well as improving its treatment," notes Chodosh.

Related Stories

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.