About face: Long-ignored segments of DNA play role in early stages of face development

October 22, 2012 by Christopher Vaughan
About face: Long-ignored segments of DNA play role in early stages of face development
Joanna Wysocka and Alvaro Rada Iglesias led a team that discovered how a collection of DNA sequences called "enhancers" can affect the activity of genes that govern the face's developmental process.

(Medical Xpress)—The human face is a fantastically intricate thing. The billions of people on the planet have faces that are individually recognizable because each has subtle differences in its folds and curves. How is the face put together during development so that, out of billions of people, no two faces are exactly the same?

School of Medicine researcher Joanna Wysocka, PhD, and her colleagues have discovered key that guide the earliest stages of the process.

Their research, published in the Sept. 13 issue of Cell Stem Cell, provides a resource for others studying facial and could give insights to the cause of some facial . Because there is not enough in the body to define exactly where each cell will go, development of the face proceeds much like origami: genes provide instructions for folding, crimping, and movement of cells. As with origami, following a sequence of simple instructions can result in a complex, intricate object.

Wysocka focused on the first critical fold in the process of making an embryo, when the whole of the embryo is a flat sheet of cells that creases and closes over on itself to make a tube. Much of the tube eventually becomes the foundation of the brain and the , but one end sets the stage for the formation of the head and face. This process is driven by a small population of remarkable cells called .

"We were interested in identifying the portions of the that are responsible for the behavior of the neural crest," Wysocka said.

What they discovered is that the modification of a collection of called "enhancers" can dial up or down the activity of the genes governing which cells eventually become the face. It's almost as if they have discovered how the instructions for a piece of origami can be modified—slightly change how a fold is made and you may end up with something very different looking.

Of particular interest is that although these enhancers affect how genes function, enhancers are not genes nor are they always near the genes they affect. Enhancers exist in the vast non-coding regions of the genome that people used to call "junk DNA," but which is now proving important in genetic function. The enhancers can be silent or active, depending on where a cell is and at what stage it is in the development of the embryo.

"What's really emerging is the idea that one cell type's junk is another cell type's treasure," said Wysocka.

What's useful about their discoveries is that that researchers will now know much better where to look for the causes of disorders of facial development, such as cleft lip or cleft palate. In these disorders, sheets of cells from opposite sides of the face do not fuse fully during development, leaving a cleft or gap. "By identifying neural crest enhancers, our study can tell other investigators where to look for genetic variants that can explain these facial abnormalities or even why each human being has a unique face," said Alvaro Rada Iglesias, PhD, who is the first author on the paper and a member of the Wysocka laboratory.

Although only a handful of enhancers were already shown to be important in regulating early neural crest development, research by Wysocka and her colleagues has produced thousands of such enhancers that are active in determining the behavior of these cells. Moreover, this research showed that the information contained within those enhancers can be used to identify novel genes controlling and face formation."Our results will serve as a resource for other investigators," she said.

Wysocka expects that the usefulness of the data will extend far beyond facial development. By having the sequences of thousands of these enhancers, scientists can look at the kind of DNA patterns or "motifs" that are common in these enhancers and use that information to look for enhancers that regulate genes throughout development.

Explore further: Finger (mal)formation reveals surprise function of desert DNA

Related Stories

Finger (mal)formation reveals surprise function of desert DNA

November 23, 2011
Swiss scientists from the EPFL and the University of Geneva have discovered a genetic mechanism that defines the shape of our members in which, surprisingly, genes play only a secondary role.

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.