About face: Long-ignored segments of DNA play role in early stages of face development

October 22, 2012 by Christopher Vaughan
About face: Long-ignored segments of DNA play role in early stages of face development
Joanna Wysocka and Alvaro Rada Iglesias led a team that discovered how a collection of DNA sequences called "enhancers" can affect the activity of genes that govern the face's developmental process.

(Medical Xpress)—The human face is a fantastically intricate thing. The billions of people on the planet have faces that are individually recognizable because each has subtle differences in its folds and curves. How is the face put together during development so that, out of billions of people, no two faces are exactly the same?

School of Medicine researcher Joanna Wysocka, PhD, and her colleagues have discovered key that guide the earliest stages of the process.

Their research, published in the Sept. 13 issue of Cell Stem Cell, provides a resource for others studying facial and could give insights to the cause of some facial . Because there is not enough in the body to define exactly where each cell will go, development of the face proceeds much like origami: genes provide instructions for folding, crimping, and movement of cells. As with origami, following a sequence of simple instructions can result in a complex, intricate object.

Wysocka focused on the first critical fold in the process of making an embryo, when the whole of the embryo is a flat sheet of cells that creases and closes over on itself to make a tube. Much of the tube eventually becomes the foundation of the brain and the , but one end sets the stage for the formation of the head and face. This process is driven by a small population of remarkable cells called .

"We were interested in identifying the portions of the that are responsible for the behavior of the neural crest," Wysocka said.

What they discovered is that the modification of a collection of called "enhancers" can dial up or down the activity of the genes governing which cells eventually become the face. It's almost as if they have discovered how the instructions for a piece of origami can be modified—slightly change how a fold is made and you may end up with something very different looking.

Of particular interest is that although these enhancers affect how genes function, enhancers are not genes nor are they always near the genes they affect. Enhancers exist in the vast non-coding regions of the genome that people used to call "junk DNA," but which is now proving important in genetic function. The enhancers can be silent or active, depending on where a cell is and at what stage it is in the development of the embryo.

"What's really emerging is the idea that one cell type's junk is another cell type's treasure," said Wysocka.

What's useful about their discoveries is that that researchers will now know much better where to look for the causes of disorders of facial development, such as cleft lip or cleft palate. In these disorders, sheets of cells from opposite sides of the face do not fuse fully during development, leaving a cleft or gap. "By identifying neural crest enhancers, our study can tell other investigators where to look for genetic variants that can explain these facial abnormalities or even why each human being has a unique face," said Alvaro Rada Iglesias, PhD, who is the first author on the paper and a member of the Wysocka laboratory.

Although only a handful of enhancers were already shown to be important in regulating early neural crest development, research by Wysocka and her colleagues has produced thousands of such enhancers that are active in determining the behavior of these cells. Moreover, this research showed that the information contained within those enhancers can be used to identify novel genes controlling and face formation."Our results will serve as a resource for other investigators," she said.

Wysocka expects that the usefulness of the data will extend far beyond facial development. By having the sequences of thousands of these enhancers, scientists can look at the kind of DNA patterns or "motifs" that are common in these enhancers and use that information to look for enhancers that regulate genes throughout development.

Explore further: Finger (mal)formation reveals surprise function of desert DNA

Related Stories

Finger (mal)formation reveals surprise function of desert DNA

November 23, 2011
Swiss scientists from the EPFL and the University of Geneva have discovered a genetic mechanism that defines the shape of our members in which, surprisingly, genes play only a secondary role.

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.