MRI research sheds new light on nerve fibres in the brain

October 24, 2012
MRI research sheds new light on nerve fibres in the brain

World-leading experts in Magnetic Resonance Imaging from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre  have made a key discovery which could give the medical world a new tool for the improved diagnosis and monitoring of neuro-degenerative diseases like multiple sclerosis.

The new study, published in the , reveals why images of the brain produced using the latest MRI techniques are so sensitive to the direction in which nerve fibres run.

The of the brain is made up of billions of microscopic nerve fibres that pass information in the form of tiny electrical signals. To increase the speed at which these signals travel, each is encased by a sheath formed from a fatty substance, called myelin. Previous studies have shown that the appearance of white matter in images depends on the angle between the nerve fibres and the direction of the very strong magnetic field used in an .

Based on knowledge of the molecular structure of myelin, the Nottingham physicists devised a new model in which the nerve fibres are represented as long thin with special (anisotropic) magnetic properties. This model explains the dependence of image contrast on fibre orientation in white matter and potentially allows information about the nerve fibres (such as their size and direction) to be inferred from magnetic resonance images. 

Research Fellow Dr Samuel Wharton said: "While most MRI-based research focuses on tissue measurements at the millimetre length scale, our experimental scans on healthy human volunteers and modelling of the shows that much more detailed microscopic information relating to the size and direction of nerve fibres can be generated using fairly simple imaging techniques. The results will give clinicians more context in which to recognise and identify lesions or abnormalities in the brain and will also help them to tailor different types of scan to a particular patient."

Head of the School of Physics and Astronomy, Professor Richard Bowtell added "These results should be an important boost to the world of biomedical imaging which is a key research priority here at The University of Nottingham. We have a strong heritage of groundbreaking work in MRI at the Sir Peter Mansfield Magnetic Resonance Centre and the work was carried out using our 7T scanner which is the strongest magnetic field system for scanning human subjects in the UK."

Dr Nikolaos Evangelou, Clinical Associate Professor specialising in multiple sclerosis at the Nottingham University Hospitals Trust said: "This research opens new avenues of looking at the nerve fibres in the brain. The more we understand about the nerves and the myelin around them, the more successful we are in studying brain diseases, such as multiple sclerosis. The recent advances in our understanding and treatments of MS are based on basic, solid research such as the one presented by Dr Wharton and Bowtell."

The research will give scientists and clinicians all over the world a better understanding of the effects of nerve fibres and their orientation in and has potentially useful applications in the diagnosis and monitoring of brain and nervous system diseases like multiple sclerosis where there are known links to myelin loss.

Explore further: Nerve signal discovery backs Nobel winner's theory

Related Stories

Nerve signal discovery backs Nobel winner's theory

October 11, 2012
Scientists have proved a 60-year-old theory about how nerve signals are sent around the body at varying speeds as electrical impulses.

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Mathematical model unlocks key to brain wiring

May 10, 2012
(Medical Xpress) -- A new mathematical model predicting how nerve fibres make connections during brain development could aid understanding of how some cognitive disorders occur.

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.