Researcher pieces together AML prognosis puzzle

October 15, 2012

When patients suffering from Acute Myeloid Leukemia (AML) express high levels of the gene, MN1, an already aggressive leukemia is accelerated and shortens survival time. While that's a known fact, the mechanisms involved aren't well understood which is why a Wake Forest Baptist Medical Center researcher decided to take a closer look.

Timothy S. Pardee, M.D., Ph.D., an assistant professor of hematology and oncology at Wake Forest Baptist, said that previous studies of AML have shown that when patients express high levels of the MN1 gene, chemotherapy doesn't help as much and they die sooner from the disease.

"No one really knows why this is happening," Pardee said. "Because this disease is treated only with chemotherapy we hypothesized that high expression of this gene, would make the leukemia resistant to chemotherapy treatment."

AML is an aggressive malignancy of the bone marrow where the that usually protect people from infections become cancerous, leading to and death. This cancer is characterized by a high relapse rate and resistance to chemotherapy. In older patients the average survival for those with high MN1 expression is less than six months while for low expressers it is closer to nine months.

The research was published online in August in .

To test the hypothesis, Pardee set out to make express the MN1 gene and looked at how they changed in response to chemotherapy. He did this by using a retrovirus to add the MN1 gene and force high levels of expression in a genetically-defined of AML. This resulted in the mice having a worse prognosis compared to the group of mice that didn't get the MN1 gene. In addition, he also took the same and put it into two separate human cell lines acquired from .

"We looked to see if the cells in both models were resistant to chemotherapy. The answer is 'yes,' though the resistance in was more evident," Pardee said.

Then Pardee compared mouse leukemia cells that expressed high levels of MN1 and those that didn't to investigate what occurs when the cells are hit with chemotherapy. "It turns out there is a key protein, p53, that tells the cancer cells when DNA damage is too much and that it's time to commit suicide," Pardee said. "But p53 was not being made to the same level in those cells that were making the MN1 gene and the ability to turn that DNA damaged signal into leukemia cell death was much lower in the cells that make MN1 protein."

Pardee said he looked at some other proteins involved in leukemia cell death and found that an additional protein called BIM – which promotes cell death – was also being shut down in the cells that made higher levels of MN1.

"We know it's happening, but we don't know how. Our ultimate goal is to figure out better ways to treat these patients that do so poorly," Pardee said. "We were able to make the leukemia cells a little bit more sensitive to chemotherapy when we treated them with a drug that increases p53 levels, suggesting it might be a strategy to look at for patients who have this high MN1 expression.

Explore further: Study reveals need for personalized approach in treatment of AML

Related Stories

Study reveals need for personalized approach in treatment of AML

May 16, 2011
A new discovery in mice by researchers at Wake Forest Baptist Medical Center may one day allow doctors to spare some patients with acute myeloid leukemia (AML) from toxic treatments, while also opening the door for new therapeutic ...

Gene discovery could improve treatment for acute myeloid leukemia

August 13, 2012
Scientists at Albert Einstein College of Medicine of Yeshiva University have made a discovery involving mice and humans that could mean that people with acute myeloid leukemia (AML), a rare and usually fatal cancer, are a ...

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

Cell death researchers identify new Achilles heel in acute myeloid leukemia

January 17, 2012
Melbourne researchers have discovered that acute myeloid leukaemia (AML), an aggressive blood cancer with poor prognosis, may be susceptible to medications that target a protein called Mcl-1.

Study pinpoints and plugs mechanism of AML cancer cell escape

January 18, 2012
A study published this week in the journal Leukemia identifies a mechanism that acute myeloid leukemia (AML) cells use to evade chemotherapy – and details how to close this escape route.

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.