Stay-at-home transcription factor prevents neurodegeneration

October 29, 2012
A JCB study shows how the protein CNTF activates the transcription factor STAT3 (green), which lingers in the axon (blue) and helps stabilize microtubules by inhibiting a protein called stathmin (magenta). STAT3 and stathmin colocalize in axonal branch points (arrowheads) and growth cones (arrow). Credit: Selvaraj, B.T.

A study in The Journal of Cell Biology shows how a transcription factor called STAT3 remains in the axon of nerve cells to help prevent neurodegeneration. The findings could pave the way for future drug therapies to slow nerve damage in patients with neurodegenerative diseases.

In Lou Gehrig's Disease (ALS) and other neurodegenerative diseases, usually die in stages, with axons deteriorating first and the cells themselves perishing later. Axon degeneration may represent a turning point for patients, after which so much has accumulated that treatments won't work. Researchers have tested several proteins for their ability to save axons. One of these molecules, CNTF, rescues axons in rodents and extends their lives. But it caused severe side effects in patients during clinical trials. "Acting on the same pathway but farther downstream could be an ideal way to improve the situation for " and possibly for other neurodegenerative diseases, says senior author Michael Sendtner from the University of Wuerzburg in Germany.

To discover how CNTF works, Sendtner and his colleagues studied mice with a mutation that mimics ALS. The researchers found that CNTF not only prevented shrinkage of the rodents' motor neurons, it also reduced the number of swellings along the axon that are markers of degeneration. It is known that CNTF indirectly turns on the transcription factor STAT3, so the researchers wanted to determine if STAT3 is behind CNTF's protective powers. They tested whether CNTF helps motor neurons that lack STAT3 and discovered that, in the mutant mice, axons lacking STAT3 were half as long as those from a control group after CNTF treatment

Once it has been activated, STAT3 typically travels to the nucleus of the neuron to switch on genes. But the researchers were surprised to find that most of the axonal STAT3 did not move to the nucleus and instead had a local effect in the axon. Specifically, the team found that activated STAT3 inhibited stathmin, a protein that normally destabilizes microtubules. When the team removed stathmin in motor neurons from the , the axons grew at the same rate as axons from normal mice but didn't elongate any faster after doses of CNTF. These results indicate that CNTF mainly stimulates axon growth by thwarting stathmin and suggests that drugs to block stathmin could slow neuron breakdown in patients with .

Explore further: Nerve pathway for combating axon injury and stress may hold benefits for individuals with neurodegenerative disorders

More information: J. Cell Biol. doi:10.1083/jcb.201203109

Related Stories

Nerve pathway for combating axon injury and stress may hold benefits for individuals with neurodegenerative disorders

June 27, 2012
(Medical Xpress) -- Researchers from the Huck Institutes' Center for Cellular Dynamics — led by Center director Melissa Rolls — have found that a neuroprotective pathway initiated in response to injured or stressed ...

New drug target for kidney disease discovered

April 26, 2011
Two discoveries at UC Santa Barbara point to potential new drug therapies for patients with kidney disease. The findings are published in this week's issue of the Proceedings of the National Academy of Sciences.

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.