A new technique to study how myeloids become white blood cells

October 25, 2012, University of Illinois at Urbana-Champaign

University of Illinois cell and developmental Biology professor Fei Wang and colleagues have created a new technique to study how myeloids, a type of blood stem cell, become the white blood cells important for immune system defense against infections and tissue damage. This approach offers new insights into the molecular mechanisms at work during myeloid differentiation, and may improve our ability to treat myeloid diseases like leukemia, the researchers report. Their findings appear in the journal Blood.

Myeloids are blood stem cells from bone marrow or the spinal cord that differentiate into common types of like and macrophages. Deficiencies in this differentiation process can cause leukemia.

Researchers in the field had previously studied myeloid differentiation by using cells taken directly from animals, or they transformed leukemia to their previous myeloid stem cell-like states. are hard to grow and manipulate genetically, however, and tumor cells still contain the that caused them to divide uncontrollably in the first place. The drawbacks of these systems prompted Wang to develop a better method for studying the mechanisms of myeloid differentiation.

Wang and his team began by turning mouse into myeloid progenitor cells. They then added a protein called Hoxb8 to these cells that had been shown previously to immortalize myeloid progenitor cells.


"This really simplified the whole system, so, number one, we didn't have to deal with animals or human bodies, and, number two, we immortalized these cells so that they can be easily handled in culture and maintain normal myeloid progenitor cell genetic information," Wang said. 



The researchers wanted to prove that their model is effective in helping them determine the important to myeloid differentiation, so they turned to a class of enzymes, called protein kinases, that are known to mediate processes like cell development, immune response, and cell differentiation. The researchers screened a variety of protein kinase inhibitors to find potential key regulators of myeloid differentiation.

A protein kinase inhibitor of a molecule called mTor, a master regulator of cell behavior, was found to interfere with myeloid differentiation, signifying that mTor is a key regulator of this process. Further experiments showed that this molecule is necessary for myeloid differentiation.

"This is the first evidence showing that this molecule plays a significant role in myeloid differentiation," Wang said.

This finding serves as a proof of principle that the new approach provides a powerful tool for future studies of normal and abnormal myeloid differentiation, Wang said.

"Using this system, we can introduce genetic manipulations that tell us something very important about how normal myeloid differentiation works, and what kind of molecular events in this process can go wrong, leading to diseases like leukemia," Wang said.

"People can use this as a platform for large-scale screening analysis for drugs that potentially can promote myeloid differentiation and can slow down or stop myeloid disease processes."

Explore further: A new target in acute myeloid leukemia

More information: Blood bloodjournal.hematologylibrary … 2-03-414979.abstract

Related Stories

A new target in acute myeloid leukemia

July 16, 2012
Acute myeloid leukemia, a common leukemia in adults, is characterized by aberrant proliferation of cancerous bone marrow cells. Activating mutations in a protein receptor known as FLT3 receptor are among the most prevalent ...

Study reveals origins of a cancer affecting the blood and bone marrow

May 12, 2011
A new study by the NYU Cancer Institute, an NCI-designated cancer center, sheds light on the origins of myeloid leukemia, a type of blood cancer that affects children and adults. The researchers discovered that novel mutations ...

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.