Breast cancer drug geldanamycin could halt other tumors

November 6, 2012, University of Leeds

A drug commonly used in treating breast cancer could have far wider benefits, offering a new way of preventing cancers spreading through the body, according to a University of Leeds-led study.

The drug, geldanamycin, is well known for attacking a protein associated with the spread of . However, a laboratory-based study found it also degraded a different protein that triggers blood vessel growth.

Stopping unwanted blood vessel growth is a key challenge in the battle against cancer, according to Dr Sreenivasan Ponnambalam, reader in human disease biology in the University of Leeds' Faculty of Biological Sciences.

"This is potentially very significant because tumours secrete substances that stimulate blood vessels to develop around them, forming networks that supply nutrients and provide pathways for spread around the body," Dr Ponnambalam said. "This is one of the big problems in cancer: how can we stop the tumour growing and spreading through these blood vessel networks?"

There are already other drugs available that try to stop this growth. One type tries to attack directly the membrane protein VEGFR2, which is essential for new . However, that approach carries the risk of serious side-effects because proteins in the membrane walls of blood vessels do important work such as controlling blood pressure.

Geldanamycin offers a novel and potentially safer solution because it suppresses the protein indirectly.

The new study, based on experiments with and different animal models, found that geldanamycin indirectly triggered the clearance of the VEGFR2 protein by activating a cellular quality-control system that breaks down many proteins.

That quality-control system already degrades VEGFR2 relatively slowly but the drug accelerates the process, preventing activation of the protein and inappropriate new .

"With , we have been trying to deal with the situation after the switch has been thrown. What this drug does is destroy the key part of the switch before that switch is thrown," Dr Ponnambalam said.

"Geldanamycin and chemical derivatives have been under intensive study in the laboratory and in clinical trials for the past 20 years. The cost to the NHS or patients could be relatively low compared to the expensive existing anti-cancer drugs, which are still under patent," Dr Ponnambalam added.

The paper is published in the journal PLOS ONE.

Explore further: Culprit behind unchecked angiogenesis identified

More information: A.F Bruns N. Yuldasheva, A.M. Latham, Caroline Pellet-Many, L. Bao, P. Frankel, S.L. Stephen, G.J. Howell, S.B. Wheatcroft, M.T. Kearney, I.C. Zachary, S. Ponnambalam, "A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair." PLOS ONE (2012)

Related Stories

Culprit behind unchecked angiogenesis identified

March 29, 2012
German researchers unravel a critical regulatory mechanism controlling blood vessel growth that might help solve drug resistance problems in the future.

Researchers find protein that might be key to cutting cancer cells' blood supply

May 12, 2011
UT Southwestern Medical Center researchers have discovered a protein that guides blood vessel development and eventually might lead to a treatment to keep cancer cells from spreading.

New strategy to attack tumor-feeding blood vessels

June 6, 2011
Scientists at the Walter and Eliza Hall Institute have discovered a key molecule needed to kill the blood vessels that supply tumours.

Common transplant drug inhibits breast cancer growth, study shows

May 26, 2011
Tacrolimus, a drug that is commonly used to prevent organ transplantation rejection, inhibits breast cancer growth in pre-clinical studies. The finding from UNC scientists was reported in the May 26th PLoS ONE.

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.