New research sheds light on childhood neuromuscular disease

November 20, 2012

A study by scientists at the Motor Neuron Center at Columbia University Medical Center suggests that spinal muscular atrophy (SMA), a genetic neuromuscular disease in infants and children, results primarily from problems in the motor circuits that coordinate muscle movement. Previously, researchers thought that motor neurons or muscle cells were responsible.

In a second study, researchers at the Motor Neuron Center identified the molecular pathway in SMA that leads to problems with motor function. Findings from the studies could lead to therapies for the debilitating and often fatal neuromuscular disease.

"To our knowledge, this is the first clear demonstration that defects in the function of a neuronal circuit are the cause of a neurological disease," Dr. Brian McCabe, assistant professor of pathology and cell biology, said about the first study.

Both studies were published online Oct. 11 in the journal Cell.

SMA is a hereditary neuromuscular disease characterized by and weakness. There is no treatment for SMA, which is estimated to affect as many as 10,000 to 25,000 children and adults in the United States and is the leading genetic cause of death in infants.

Based on the findings of McCabe and his colleagues, the SMA Clinical Research Center at CUMC launched a clinical trial last July of a potassium channel blocker called dalfampridine for the treatment of patients with SMA. The drug is currently marketed under the brand name Ampyra for multiple sclerosis. "This drug is unlikely to be a cure for SMA, but we hope it will benefit patient symptoms," McCabe said.

Explore further: Novel mechanisms underlying major childhood neuromuscular disease identified

Related Stories

Novel mechanisms underlying major childhood neuromuscular disease identified

October 11, 2012
A study by scientists from the Motor Neuron Center at Columbia University Medical Center (CUMC) suggests that spinal muscular atrophy (SMA), a genetic neuromuscular disease in infants and children, results primarily from ...

New information about the causes of 'floppy baby' syndrome discovered

June 28, 2012
(Medical Xpress) -- New information on the potential cause of Spinal Muscular Atrophy (SMA), known as “floppy baby syndrome”, has been discovered by cell biology experts at the University of St Andrews.

Researchers identify genetic mutation causing rare form of spinal muscular atrophy

May 10, 2012
Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.