Unlocking the destiny of a cell

November 1, 2012
Juvenile C. elegans.

(Medical Xpress)— Scientists have discovered that breaking a biological signaling system in an embryo allows them to change the destiny of a cell. The findings could lead to new ways of making replacement organs.

The discovery was made in the laboratory of Joel H. Rothman, a professor in the Department of Molecular, Cellular, and at UC Santa Barbara. The studies were reported in the interdisciplinary journal , and were carried out by Ph.D student Nareg Djabrayan, in collaboration with Rothman and two other members of the laboratory, Ph.D student Erica Sommermann and Nathaniel Dudley.

"At some point along the way toward becoming part of a complete individual, become destined to choose a particular identity and long-term profession," Rothman noted. "Once a cell chooses who it will be, it locks onto that identity for the remainder of its life."

A cell that is destined to become a heart exclusively in the heart until it dies, and never chooses later to change jobs by becoming, for example, a brain cell. "If Oz's wizard possessed the powers he claimed, and had a spare brain lying around, he could switch it to a heart as a gift for the Tin Man. And he could reverse the trick for the Scarecrow," Rothman said.

Similarly, the researchers have found a way to unlock cells' destinies and lead them to take on a new profession.

The scientists found that a widely used cell , known as "Notch" signaling, causes cells to commit to a particular occupation, such as a skin or brain cell. When they blocked the signal by , the researchers discovered that they could force a cell to change its destiny, such that they instead became cells of the .

"We found that we could break the signal in such a way that cells would follow their usual destinies, but were somehow less committed to doing so: We could convince them to change professions long after they would normally refuse to do so," Rothman said.

The scientists made the discovery by harnessing the genetics of a tiny nematode worm known as C. elegans, a model animal that has become famed in fundamental studies in biomedicine, and has been the subject of six Nobel prizes.

The researchers discovered that shutting off the Notch signal in early embryos made it possible for them to change the destiny of cells much later on, at a stage when they normally could not. "The later cells seemed to remember what had happened to their great-grandparent cells," Rothman said. "Imagine if the experience of your great-grandparents predestined you to become a lawyer, dentist, or coal miner, and you could not choose to change your professional destiny. That is what is happening to cells whose cellular ancestors received the Notch signal."

The research was supported by the National Institute of Child Health and Human Development and the California Institute of Regenerative Medicine.

The discovery could someday help scientists develop new ways to produce tissues and organs in the laboratory that could be used to replace a patient's injured, diseased, or aged organs. By unlocking a cell's normal destiny, it may be possible to change it into an altogether different type of cell that could be used to grow a new organ for a patient—or perhaps, a Tin Man.

Related Stories

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.