Targeting downstream proteins in cancer-causing pathway shows promise in cell, animal model

November 13, 2012, University of Pennsylvania School of Medicine

The cancer-causing form of the gene Myc alters the metabolism of mitochondria, the cell's powerhouse, making it dependent on the amino acid glutamine for survival. In fact, 40 percent of all "hard-to-treat" cancers have a mutation in the Myc gene.

Accordingly, depriving cells of glutamine selectively induces programmed cell death in cells overexpressing mutant Myc.

Using Myc-active neuroblastoma cancer cells, a team led by Howard Hughes Medical Institute (HHMI) investigator M. Celeste Simon, Ph.D., scientific director for the Abramson Family Cancer Research Institute (AFCRI), identified the proteins PUMA, NOXA, and TRB3 as executors of the glutamine-starved cells. These three proteins represent a downstream target in the Myc pathway at which to aim drugs. Roughly 25 percent of all neuroblastoma cases are associated with Myc-active cells.

The findings appear in this week's issue of Cancer Cell. Simon is also a professor of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania. The Penn team collaborated with colleagues from The Children's Hospital of Philadelphia (CHOP) John Maris and Michael Hogarty.

"These findings come from studies of fundamental and would not have been discovered without ongoing support for basic research," notes Simon. "Translational research is very important, but equal emphasis on basic research of processes such as is critical for the ultimate cure of cancer."

Glutamine depletion in Myc-mutant cells induces cell death through a complicated series of molecular switches involving the three protein executors and the DNA-binding protein ATF4. Knowing this, the team showed that either agonists of ATF4 or inhibitors of glutamine metabolism potently caused cell death in assays using and inhibited tumor growth in . Drugs in these two classes have been approved by the and are being tested in clinical trials for other disorders.

Explore further: Lymphoma therapy could deliver a double punch

Related Stories

Lymphoma therapy could deliver a double punch

April 30, 2012
B cell lymphomas are a group of cancers of that originate in lymphoid tissue from B cells, the specialized immune cell type that produces antibodies. The development of B cell lymphoma is associated with several known genetic ...

Protein may represent a switch to turn off B cell lymphoma

May 7, 2012
Researchers studying the molecular signals that drive a specific type of lymphoma have discovered a key biological pathway leading to this type of cancer. Cancerous cells have been described as being "addicted" to certain ...

Metabolic profiles essential for personalizing cancer therapy

February 7, 2012
One way to tackle a tumor is to take aim at the metabolic reactions that fuel their growth. But a report in the February Cell Metabolism shows that one metabolism-targeted cancer therapy will not fit all. That means that ...

Recommended for you

Dulling cancer therapy's double-edged sword

January 17, 2018
Researchers have discovered that killing cancer cells can actually have the unintended effect of fueling the proliferation of residual, living cancer cells, ultimately leading to aggressive tumor progression.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.