Double duty: Immune system regulator found to protect brain from effects of stroke

November 28, 2012

A small molecule known to regulate white blood cells has a surprising second role in protecting brain cells from the deleterious effects of stroke, Johns Hopkins researchers report. The molecule, microRNA-223, affects how cells respond to the temporary loss of blood supply brought on by stroke—and thus the cells' likelihood of suffering permanent damage.

"We set out to find a small molecule with very specific effects in the brain, one that could be the target of a future ," says Valina Dawson, Ph.D., a professor in the Johns Hopkins University School of Medicine's Institute for . "What we found is this molecule involved in immune response, which also acts in complex ways on the brain. This opens up a suite of interesting questions about what microRNA-223 is doing and how, but it also presents a challenge to any therapeutic application." A report on the discovery is published in the Nov. 13 issue of the .

RNA is best known as a go-between that shuttles genetic information from DNA and then helps produce proteins based on that information. But, Dawson explains, a decade ago researchers unearthed a completely different class of RNA: small, nimble fragments that regulate . In the case of microRNA, one member of this class, that control comes from the ability to bind to RNA carrying genetic information, and thus prevent them from delivering their messages. "Compared with most ways of shutting genes off, this one is very quick," Dawson notes.

Reasoning that this quick action, along with other properties, could make microRNAs a good target for therapy development, Dawson and her team searched for microRNAs that regulate ' response to .

To do that, they looked for proteins that increased in number in cells subjected to stress, and then examined how production of these proteins was regulated. For many of them, microRNA-223 played a role, Dawson says.

In most cases, the proteins regulated by microRNA-223 turned out to be involved in detecting and responding to glutamate, a common chemical signal brain cells use to communicate with each other. A stroke or other injury can lead to a dangerous excess of glutamate in the brain, as can a range of diseases, including autism and Alzheimer's.

Because microRNA-223 is involved in regulating so many different proteins, and because it affects glutamate receptors, which themselves are involved in many different processes, the molecule's reach turned out to be much broader than expected, says Maged M. Harraz, Ph.D., a research associate at Hopkins who led the study. "Before this experiment, we didn't appreciate that a single microRNA could regulate so many proteins," he explains.

This finding suggests that microRNA-223 is unlikely to become a therapeutic target in the near future unless researchers figure out how to avoid unwanted side effects, Dawson says.

Explore further: Making memories: How one protein does it

More information: www.pnas.org/content/early/201 … /1217394109.abstract

Related Stories

Making memories: How one protein does it

March 5, 2012
Studying tiny bits of genetic material that control protein formation in the brain, Johns Hopkins scientists say they have new clues to how memories are made and how drugs might someday be used to stop disruptions in the ...

Fragile X protein acts as toggle switch in brain cells

June 9, 2011
New research shows how the protein missing in fragile X syndrome – the most common inherited form of intellectual disability – acts as a molecular toggle switch in brain cells.

Small molecules can starve cancer cells

October 9, 2011
All cells in our body have a system that can handle cellular waste and release building blocks for recycling. The underlying mechanism is called autophagy and literally means "self-eating". Many cancer cells have increased ...

Recommended for you

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

Immunosuppression underlies resistance to anti-angiogenic therapy

July 14, 2017
A Massachusetts General Hospital (MGH) research team has identified a novel mechanism behind resistance to angiogenesis inhibitors - drugs that fight cancer by suppressing the formation of new blood vessels. In their report ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.