Study provides first direct evidence linking TB infection in cattle and local badger populations

November 29, 2012, Wellcome Trust

Transmission of tuberculosis between cattle and badgers has been tracked at a local scale for the first time, using a combination of bacterial whole genome DNA sequencing and mathematical modelling. The findings highlight the potential for the use of next generation sequencing as a tool for disentangling the impact of badgers on TB outbreaks in cows at the farm level.

The role of in the transmission of (bTB) amongst remains controversial, with the government's proposal to implement a widespread badger cull in England recently delayed and meeting with extensive criticism over the evidence base for this approach.

Previous studies have used lower resolution genetic typing of and information observed during an outbreak to identify links between cattle and badgers. However, until now, direct evidence of transmission of the bacteria between the two hosts at the farm scale has been lacking.

In this study, researchers made use of advances in genetic technologies to sequence whole genomes of bacteria that had been isolated from twenty six cows and four badgers from a group of neighbouring farms in Northern Ireland over a decade long history of repeated bTB outbreaks. This approach enabled the team to retrospectively trace changes in the bacteria's DNA as it passed from animal to animal.

The findings reveal that the bacteria isolated from badgers and cattle were extremely closely related, with often indistinguishable bacterial types obtained from badgers and nearby cattle farms. Moreover, the bacteria isolated from the two species were more closely related to each other than they were to farms even a few kilometers away.

"This study provides the first direct evidence of the close relationship between tuberculosis infections in cows and local badgers, at a very local scale," explains Prof. Rowland Kao, a Wellcome Trust Senior Research Fellow who led the study jointly conducted by the University of Glasgow and the Agri-Food and Biosciences Institute (AFBI) in Northern Ireland. "However, only with a larger study might we be able to quantify the extent and direction of transmission between cattle and badgers and reliably inform disease control policies."

The mathematical models used in this study show that different herd outbreaks were usually characterised by genetically distinct groups of bacteria, while bacteria from within single outbreaks were usually closely related, highlighting the potential to use of next generation sequencing for tracking spread of the bacteria from herd to herd.

Bovine tuberculosis (bTB) is an important disease of both livestock and wildlife with severe impacts on animal health and subsequent economic consequences. Although the disease in cattle is caused by a different bacteria from human disease, Mycobacterium bovis rather than Mycobacterium tuberculosis, M. bovis is believed to have been a major historical contributor to human cases of TB worldwide and remains a health concern in both developed and developing countries.

The study is published today in the journal PLOS Pathogens.

Explore further: Localized reactive badger culling raises bovine tuberculosis risk, new analysis confirms

More information: R.Biek et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLOS Pathogens, 2012 [Epub ahead of print].

Related Stories

Localized reactive badger culling raises bovine tuberculosis risk, new analysis confirms

July 13, 2011
The study, by researchers at the Medical Research Council (MRC) Centre for Outbreak Analysis and Modelling at Imperial College London, is published today in the Royal Society journal Biology Letters.

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.