Simplifying heart surgery with stretchable electronics devices

November 15, 2012
Simplifying heart surgery with stretchable electronics devices
Researchers utilized stretchable electronics to create a catheter to make cardiac ablation simpler.

(Medical Xpress)—Researchers at the McCormick School of Engineering are part of a team that has used stretchable electronics to create a multipurpose medical catheter that can both monitor heart functions and perform corrections on heart tissue during surgery.

The device marks the first time stretchable electronics have been applied to a surgical process known as , a milestone that could lead to simpler surgeries for arrhythmia and other . The researchers had previously demonstrated the concept to apply stretchable electronics to heart surgery, but with this research improved the design's functionality to the point that it could be utilized in .

Researchers utilized stretchable electronics to create a catheter to make cardiac ablation simpler.

A paper describing the research, " and Actuator Webs for Large-Area Cardiac Mapping and Therapy," was published November 12 in the .

Cardiac ablation is a surgical technique that corrects heart rhythm irregularities by destroying specific that triggers irregular heartbeats. The procedure is typically performed either with open-heart surgery or by inserting a series of long, flexible catheters through a vein in the patient's groin and into his heart.

Currently this catheter method requires the use of three different devices, which are inserted into the heart in succession: one to map the heart's signals and detect the problem area, a second to control positions of therapeutic actuators and their contact with the epicardium, and a third to burn the tissue away.

"Our catheter replaces all three devices previously needed for cardiac ablation therapy, making the surgery faster, simpler, and with a lower risk of complication," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at McCormick.

Central to the design is a section of catheter that is printed with a thin layer of stretchable electronics. The catheter's exterior protects the electronics during its trip through the bloodstream; once inside the heart, the catheter is inflated like a balloon, exposing the electronics to a larger surface area inside the heart.

With the catheter is in place, the individual devices within can perform their specific tasks. A pressure sensor determines the pressure on the heart; an EKG sensor monitors the heart's condition during the procedure; and a temperature sensor controls the temperature so as not to damage surrounding tissue. The temperature can also be controlled during the procedure without removing the catheter.

These devices can deliver critical, high-quality information—such as temperature, mechanical force, and blood flow—to the surgeon in real time, and the system is designed to operate reliably without any changes in properties as the balloon inflates and deflates.

Explore further: Mount Sinai first to use visually guided catheter ablation system to treat AFib patient

Related Stories

Mount Sinai first to use visually guided catheter ablation system to treat AFib patient

February 21, 2012
For the first time in a new U.S. clinical trial, researchers at Mount Sinai School of Medicine have used the HeartLight Endoscopic Ablation System (EAS) to correct abnormal electrical signals inside the heart of a patient ...

New procedure treats atrial fibrillation

June 28, 2011
Doctors at Washington University School of Medicine in St. Louis are performing a new procedure to treat atrial fibrillation, a common irregular heartbeat.

Loyola testing new device for treating Atrial Fibrillation

September 15, 2011
Loyola University Medical Center is testing a high-tech catheter device that's intended to improve outcomes of patients treated for atrial fibrillation, the most common irregular heartbeat.

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.