New mechanism of action for PARP inhibitors discovered

November 9, 2012

New understanding of how drugs called PARP inhibitors, which have already shown promise for the treatment of women with familial breast and ovarian cancers linked to BRCA mutations, exert their anticancer effects has led to the identification of ways in which the patient population that might benefit from PARP inhibitors could be expanded.

Yves Pommier, M.D., Ph.D., chief of the Laboratory of at the 's Center for Cancer Research in Bethesda, Md., and colleagues reported these data in Cancer Research, a journal of the American Association for Cancer Research.

"In recent years, drugs classified as poly (ADP-ribose) polymerase (PARP) inhibitors have been shown to be promising anticancer agents for breast and deficient in either BRCA1 or BRCA2," said Pommier. "Prior to our study, PARP inhibitors were thought to work primarily by blocking the DNA repair function of members of the PARP family of proteins, leading ultimately to cancer cell death."

In their initial studies, Pommier and his colleagues found that the PARP inhibitor olaparib was more toxic to than genetic elimination of PARP1.

According to Pommier, these results indicated that olaparib must have additional modes of action, and their detailed cellular analyses identified a critical one: olaparib was trapping PARP proteins, specifically PARP1 and PARP2, at sites of , and the trapped PARP protein-DNA complexes were highly toxic to cells.

When the trapping ability of olaparib was compared with that of two other PARP inhibitors under clinical development, it was found that the trapping potency of the three drugs differed markedly: niraparib was more potent than olaparib, which was in turn substantially more potent than veliparib. In contrast, olaparib was the most potent inhibitor of DNA repair function, followed by veliparib and then niraparib.

"Critical to this study, is the demonstration that PARP inhibitors are not equivalent with respect to their potency to trap PARP proteins," said Pommier. "Our findings indicate that PARP inhibitors should be categorized according to their potency to trap PARP, in addition to their ability to inhibit . This is important because it might explain differences in the results of clinical trials using distinct PARP inhibitors."

In further experiments, the researchers identified several genetic mutations in post-replication repair and Fanconi anemia pathways that, like BRCA1 and BRCA2 mutations, sensitized cultured cells to the toxic effects of trapped PARP protein-DNA complexes.

"These data suggest that patients with cancers deficient in these PARP inhibitor-sensitizing genes might benefit from treatment with PARP inhibitors," said Pommier. "It is clear, however, that this hypothesis will require rigorous testing before being broadly translated to the clinic."

Explore further: PARP inhibitors may have clinical utility in HER2-positive breast cancers

Related Stories

PARP inhibitors may have clinical utility in HER2-positive breast cancers

September 17, 2012
Poly (ADP-Ribose) polymerase (PARP) inhibitors, shown to have clinical activity when used alone in women with familial breast and ovarian cancers linked to BRCA mutations, may be a novel treatment strategy in women with HER2-positive ...

Olaparib shows promise in treating ovarian cancer, even without BRCA mutations

August 21, 2011
The PARP inhibitor, olaparib, that has shown promise in women with an inherited mutation in their BRCA1 or BRCA2 gene (accounting for about 5-10% of breast and ovarian cancer cases), has, for the first time, been shown to ...

Breakthrough could make 'smart drugs' effective for many cancer patients

June 27, 2011
(Medical Xpress) -- Newcastle and Harvard University reseachers have found that blocking a key component of the DNA repair process could extend the use of a new range of 'smart' cancer drugs called PARP inhibitors.

New class of cancer drugs could work in colon cancers with genetic mutation, study finds

April 25, 2011
A class of drugs that shows promise in breast and ovarian cancers with BRCA gene mutations could potentially benefit colorectal cancer patients with a different genetic mutation, a new study from the University of Michigan ...

Blocking molecular target could make more cancers treatable with PARP inhibitors

June 29, 2011
BOSTON--Researchers at Dana-Farber Cancer Institute have demonstrated a molecular strategy they say could make a much larger variety of tumors treatable with PARP inhibitors, a promising new class of cancer drugs.

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.