A step forward in regenerating and repairing damaged nerve cells

November 21, 2012, Institut de recherches cliniques de Montreal

A team of IRCM researchers, led by Dr. Frédéric Charron, recently uncovered a nerve cell's internal clock, used during embryonic development. The discovery was made in collaboration with Dr. Alyson Fournier's laboratory at the Montreal Neurological Institute. Published today in the prestigious scientific journal Neuron, this breakthrough could lead to the development of new tools to repair and regenerate nerve cells following injuries to the central nervous system.

Researchers in Dr. Charron's neurons, which are the that make up the central nervous system (brain and spinal cord). They want to better understand how neurons navigate through the developing embryo to arrive at their correct destination.

"To properly form , developing axons (long extensions of neurons that form nerves) follow external signals to reach the right targets," says Dr. Frédéric Charron, Director of the of research unit at the IRCM. "We discovered that nerve cells also have an , which changes their response to external signals as they develop over time."

For this research project, IRCM scientists focused on the (Shh) protein, which gives cells important information for the embryo to develop properly and plays a critical role in the development of the central nervous system.

"It is known that axons follow the Shh signal during their development," explains Dr. Patricia Yam, research associate in Dr. Charron's laboratory and first author of the study. "However, axons change their behaviour once they reach this protein, and this has been a mystery for the scientific community. We found that a nerve cell's internal clock switches its response to external signals when it reaches the Shh protein, at which time it becomes repelled by the Shh signal rather than following it."

"Our findings therefore showed that more than one system is involved in directing axon pathfinding during development," adds Dr. Yam. "Not only do nerve cells respond to external signals, but they also have an internal control system. This discovery is important because it offers new possibilities for developing techniques to regenerate and repair damaged nerve cells. Along with trying to modify external factors, we can now also consider modifying elements inside a cell in order to change its behaviour."

Injuries to the central nervous system affect thousands of Canadians every year, and can lead to lifelong disabilities. Most often caused by an accident, stroke or disease, these injuries are very difficult to repair. New tools are therefore required to repair damage to the , including techniques that could potentially regenerate nerve cells.

"The Canadian Institutes of Health Research is delighted to support research aimed at improving the lives of individuals with damage to the brain or spinal cord," says Dr. Anthony Phillips, Scientific Director of CIHR's Institute of Neurosciences, Mental Health and Addiction. ''Nerve cell repair and regeneration remains an important health challenge, and we believe that Dr. Charron's research findings will contribute to the solution."

Explore further: Connection discovered between the nervous system and the vascular system

More information: Neuron: www.cell.com/neuron/abstract/S0896-6273(12)00852-5

Related Stories

Connection discovered between the nervous system and the vascular system

June 8, 2011
Dr. Frédéric Charron, researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team have shown for the first time that a key molecule of the vascular system directs axons during the formation ...

A scientific breakthrough could help understand certain cancers

June 13, 2011
A scientific breakthrough by researchers at the Institut de recherches cliniques de Montréal (IRCM) will be published tomorrow in Developmental Cell, a scientific journal of the Cell Press group. Led by Dr. Frédéric ...

Researchers uncover a new piece of the puzzle in the development of our nervous system

July 14, 2011
Researchers at the Institut de recherches cliniques de Montréal (IRCM) are among the many scientists around the world trying to unearth our nervous system's countless mysteries. Dr. Artur Kania, Director of the IRCM's ...

Scientists uncover gene network responsible for repair of the central nervous system of the fruit fly

August 31, 2011
A gene network that controls repair to the central nervous system (CNS) after injury has been discovered in the fruit fly, Drosophila, by scientists at the University of Birmingham. This breakthrough may help to aid understanding ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.