Researcher describes cochlear amplification using novel optical technique

December 12, 2012

It has long been known that the inner ear actively amplifies sounds it receives, and that this amplification can be attributed to forces generated by outer hair cells in the cochlea.  How the ear actually accomplishes this, however, has remained somewhat of a mystery. Now, Jonathan A. N. Fisher, PhD, and colleagues at The Rockefeller University, in New York, describe how the cochlea actively self-amplifies sound it receives to help increase the range of sounds that can be heard.

The results of their research were published in the December 6, 2012 issue of Neuron. The  cover shows the study animal the researchers used to investigate amplification in the - the chinchilla. This animal is often used for hearing-related research because of the similarity it has with humans in terms of hearing and the structure of its inner ear.

Dr. Fisher received a grant for this research from the American Hearing Research Foundation in 2011.

The video will load shortly

Fisher and colleagues used a new that inactivates prestin, a motor protein involved in the movement of the outer hair cells. The outer hair cells are part of the hair cell bundles (which also include the inner hair cells)- the true of the inner ear. The main body of the hair cells sits in the basilar membrane- the tissue that lines the interior of the bony . The "hair" part of these cells, called the stereocilia, sticks up into the fluid-filled space of the cochlea, where they are pushed by the fluid as travel through it.

The sound waves traveling down the cochlea produce actual waves that can be observed along the basilar membrane as visualized in the animation below (from the Howard Hughes Medical Institute). The cochlea picks up different sound frequencies along its length, with higher frequency sounds picked up at center of the "snail" and the lower frequency sounds being picked up at the part of the cochlea closest to the .

The outer hair cells have been known to provide amplification of sound waves picked up by the inner hair cells by actively changing their shape to increase the amplitudes of the sound waves. These outer hair cells can do this because the membrane protein can contract and cause the stereocillia to be deflected by the overlying tectorial membrane.

Fisher and colleagues developed a light-sensitive drug that when illuminated by an ultraviolet laser can inactivate prestin in select locations within the cochlea. Using this novel technique, the researchers were able to affect prestin at very specific locations along the basilar membrane.

The researchers found that by inactivating prestin at very specific locations, the sound-evoked waves that carry mechanical signals to sensory were re-shaped and of smaller amplitude- indicating that without prestin, amplification is dampened  compared to what the researchers saw when prestin was allowed to function normally. Their findings reveal how prestin's molecular forces pump energy into the waves within the cochlea, and how this energy is pushed forward as the wave travels.  The research also demonstrates the importance of prestin in locally amplifying these sound evoked traveling waves.

Explore further: Scientists identify molecules in the ear that convert sound into brain signals

Related Stories

Scientists identify molecules in the ear that convert sound into brain signals

December 6, 2012
For scientists who study the genetics of hearing and deafness, finding the exact genetic machinery in the inner ear that responds to sound waves and converts them into electrical impulses, the language of the brain, has been ...

Recommended for you

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Dec 12, 2012
Does prestin contribute to reversed transduction? The ear emits sound as well - stemming from the stereo-cilia.
MrVibrating
not rated yet Dec 12, 2012
Fascinating and surprising mechanism, and the animation's great too!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.