How the common fruit fly is helping scientists to study alcohol-related disorders

December 20, 2012, University of Bristol
How the common fruit fly is helping scientists to study alcohol-related disorders

Scientists have shown how the common fruit fly Drosophila, which possess similar electrophysiological and pharmacological properties as humans, could now be used to screen and develop new therapies for alcohol-related behavioural disorders and some genetic diseases.

Researchers from the University's School of Physiology and Pharmacology have been using the fruit fly to study the on a particular gene found within potassium channels in the brain. The results, published in , have validated the fruit fly's compatibility with this type of analysis to pave the way for further study in this area.

in the brain act as nano-switches that generate small that help encode information in our brain, make our heart beat and generate . Considered as the 'spark of life' these channels form pores that allow the flow of 'charged' potassium across our cell membranes, this allows information to be encoded as electrical impulses in the brain's .

The team has been studying the KCNQ family of genes, a subtype of the potassium channel group, responsible for generating changes in the excitability of neurons that underlie and the release of dopamine—a chemical linked to the brain's central reward pathway that is stimulated after pleasurable activities. However, this reward system can become hi-jacked by alcohol, other or gambling that can cause an excess of dopamine release.

Although these important genes help regulate many other important physiological functions, when they are mutated they cause a range of common human diseases and disorders.

The team's findings show that the role of KCNQ in alcohol behaviour can be determined for the first time by using the fruit fly Drosophila. The flies lacking the KCNQ genes showed increased sensitivity to the sedative effects of alcohol with about half of these important channels being blocked after 20 mM alcohol (the amount in the blood after we drink two pints).

The fruit fly's compatibility with this type of analysis has the potential to allow both the identification of the underlying mechanism for this behaviour and screening for new therapies for alcohol-related behavioural disorders and KCNQ-related diseases such as abnormal heart rhythm, Type II diabetes, deafness and epilepsy.

Dr James Hodge, lead author from the University's School of Physiology and Pharmacology, said: "There are about 340 ion channel genes in our genome whose mutation lead to over 60 diseases, however finding the most effective way to study these mutations is a complex and lengthy task. The high throughput capability of Drosophila offers a rapid, economic and effective means to model the changes in molecular signalling that underlie these channelopathies that allows whole organism screening for new drug treatments in line with the research council priority of 3Rs (reduction, refinement and replacement) in animal research.

"Our findings validate the use of the fruit fly to study KCNQ channels as its neuronal function and neural response to alcohol suggests it functions in a similar way in humans."

The EU FP7-funded study, entitled 'KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour' by Sonia Cavaliere, John M. Gillespie, James J. L. Hodge* was published in PLOS One.

Explore further: Scientists discover how to design drugs that could target particular nerve cells

More information: www.plosone.org/article/info%3 … journal.pone.0050279

Related Stories

Scientists discover how to design drugs that could target particular nerve cells

November 10, 2011
(Medical Xpress) -- The future of drug design lies in developing therapies that can target specific cellular processes without causing adverse reactions in other areas of the nervous system. Scientists at the Universities ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.