How the common fruit fly is helping scientists to study alcohol-related disorders

December 20, 2012
How the common fruit fly is helping scientists to study alcohol-related disorders

Scientists have shown how the common fruit fly Drosophila, which possess similar electrophysiological and pharmacological properties as humans, could now be used to screen and develop new therapies for alcohol-related behavioural disorders and some genetic diseases.

Researchers from the University's School of Physiology and Pharmacology have been using the fruit fly to study the on a particular gene found within potassium channels in the brain. The results, published in , have validated the fruit fly's compatibility with this type of analysis to pave the way for further study in this area.

in the brain act as nano-switches that generate small that help encode information in our brain, make our heart beat and generate . Considered as the 'spark of life' these channels form pores that allow the flow of 'charged' potassium across our cell membranes, this allows information to be encoded as electrical impulses in the brain's .

The team has been studying the KCNQ family of genes, a subtype of the potassium channel group, responsible for generating changes in the excitability of neurons that underlie and the release of dopamine—a chemical linked to the brain's central reward pathway that is stimulated after pleasurable activities. However, this reward system can become hi-jacked by alcohol, other or gambling that can cause an excess of dopamine release.

Although these important genes help regulate many other important physiological functions, when they are mutated they cause a range of common human diseases and disorders.

The team's findings show that the role of KCNQ in alcohol behaviour can be determined for the first time by using the fruit fly Drosophila. The flies lacking the KCNQ genes showed increased sensitivity to the sedative effects of alcohol with about half of these important channels being blocked after 20 mM alcohol (the amount in the blood after we drink two pints).

The fruit fly's compatibility with this type of analysis has the potential to allow both the identification of the underlying mechanism for this behaviour and screening for new therapies for alcohol-related behavioural disorders and KCNQ-related diseases such as abnormal heart rhythm, Type II diabetes, deafness and epilepsy.

Dr James Hodge, lead author from the University's School of Physiology and Pharmacology, said: "There are about 340 ion channel genes in our genome whose mutation lead to over 60 diseases, however finding the most effective way to study these mutations is a complex and lengthy task. The high throughput capability of Drosophila offers a rapid, economic and effective means to model the changes in molecular signalling that underlie these channelopathies that allows whole organism screening for new drug treatments in line with the research council priority of 3Rs (reduction, refinement and replacement) in animal research.

"Our findings validate the use of the fruit fly to study KCNQ channels as its neuronal function and neural response to alcohol suggests it functions in a similar way in humans."

The EU FP7-funded study, entitled 'KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour' by Sonia Cavaliere, John M. Gillespie, James J. L. Hodge* was published in PLOS One.

Explore further: Scientists discover how to design drugs that could target particular nerve cells

More information: www.plosone.org/article/info%3 … journal.pone.0050279

Related Stories

Scientists discover how to design drugs that could target particular nerve cells

November 10, 2011
(Medical Xpress) -- The future of drug design lies in developing therapies that can target specific cellular processes without causing adverse reactions in other areas of the nervous system. Scientists at the Universities ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.