Researchers provide definitive proof for receptor's role in synapse development

December 31, 2012

Jackson Laboratory researchers led by Associate Professor Zhong-wei Zhang, Ph.D., have provided direct evidence that a specific neurotransmitter receptor is vital to the process of pruning synapses in the brains of newborn mammals.

Faulty pruning at this early developmental stage is implicated in autism-spectrum disorders and schizophrenia. The definitive evidence for N-methyl-D-aspartate receptor (NMDAR) in pruning has eluded researchers until now, but in research published in the , Zhang's lab had serendipitous help in the form of a mouse model containing lacking NMDAR side-by-side with cells containing the receptor.

Soon after birth, mammals' brains undergo significant development and change. Initially, large numbers of synapses form between neurons. Then, in response to stimuli, the synaptic connections are refined—some synapses are strengthened and others eliminated, or pruned.

In most synapses, glutamate serves as the neurotransmitter, and NMDAR, a major type of post-synaptic glutamate receptor, was previously known to play an important role in development. Previous research has implicated the importance of NMDARs in pruning, but it remained unclear whether they played a direct or indirect role.

Zhang and colleagues focused on the thalamus, a brain region where synapse pruning and strengthening can be monitored and quantified with relative ease. They got unexpected help when they realized the mouse model they were using had thalamus cells lacking NMDARs right next to cells with normal NMDAR levels.

The researchers showed that the refinement process was disrupted in the absence of NMDARs. At the same time, neighboring neurons with the receptors proceeded through normal synaptic strengthening and pruning, clearly establishing the necessity of NMDARs in postsynaptic neurons for synaptic refinement.

"Whenever I give a talk or meet colleagues," Zhang says, "the first question that comes up is whether the NMDA receptor is important. It's good that this is now settled definitively."

There has been extensive research into synaptic strengthening, and most of these studies indicate that the presence of NMDARs may support the recruitment of larger numbers of another kind of glutamate receptor to strengthen the . How NMDARs regulate the pruning process remains largely unknown, however.

Explore further: Researchers uncover steps in synapse building, pruning

Related Stories

Researchers uncover steps in synapse building, pruning

November 16, 2011
Like a gardener who stakes some plants and weeds out others, the brain is constantly building networks of synapses, while pruning out redundant or unneeded synapses. Researchers at The Jackson Laboratory led by Assistant ...

New research discovers key to survival of brain cells

September 28, 2011
Nicolas G. Bazan, MD, Ph.D, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health Sciences Center New Orleans, and David Stark, an MD/Ph.D student working in his lab, have discovered how a key ...

Study shows how immune cells change wiring of the developing mouse brain

May 23, 2012
Researchers have shown in mice how immune cells in the brain target and remove unused connections between brain cells during normal development. This research, supported by the National Institutes of Health, sheds light on ...

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.