One gene predicts rapid ALS progression 80 percent of the time

December 10, 2012

(Medical Xpress)—The debilitating symptoms of amyotrophic lateral sclerosis, or ALS, appear to be increased by a lack of inflammation-reducing T cells, report scientists from the Methodist Neurological Institute in an upcoming print issue of The EMBO Molecular Medicine Journal.The researchers found that expression of the gene FoxP3—which helps control the production of anti-inflammatory T cells—was an indicator of disease progression in 80 percent of the patients they studied. Low FoxP3 levels were likely in patients whose ALS would develop rapidly, and vice versa.

"This is the first demonstration that regulatory T cells may be slowing disease progression, since low FoxP3 indicates a rapidly progressing disease," said Assistant Professor of Neurology Jenny Henkel, Ph.D., the study's lead author. "Levels of FoxP3 may now be used as a prognostic indicator of future disease progression and survival."

ALS is a neurodegenerative disease that slowly and inexorably causes , then death. Loss of motor control may begin in the arms or legs, or with impaired speech, and ultimately compromise breathing. ALS is sometimes called Lou Gehrig's disease. About 5 in 100,000 people are affected, and there is no known cure.

The relationship between inflammation and ALS progression is well established in humans and animal models, and many genes influencing disease development have been identified.

"While inflammation exacerbates disease in ALS patients, this inflammation is suppressed in some patients," Henkel said. "The data in our article suggest that regulatory T cells can suppress this inflammation."

In their EMBO paper, Henkel, Professor of Neurology and Chair Stanley Appel, M.D., and their team provided supportive evidence that the genes FoxP3, TGFβ, IL4, and Gata3 are involved in ALS development. But Henkel and Appel's work also suggests FoxP3 is the best indicator of disease progression when ALS symptoms first appear.

"While expression of FoxP3, TGFβ, IL4, and Gata3 may serve as indicators for latter stages of the disease, our work suggests only FoxP3 was a early in the disease," Henkel said. "After following a group of ALS patients for three and a half years, low FoxP3 levels predicted a rapidly progressing disease 80 percent of the time."

Foxp3 and Gata3 are transcription factors that influence production of regulatory T cells, and Th2 "helper" T cells. TGFβ and IL-4 (interleukin 4) are anti-inflammatory cytokines.

Henkel, Appel, and their team studied three patient groups. In the first group, the researchers took blood samples from 54 ALS patients at different stages of the disease and from 33 healthy control volunteers. Flow cytometry and PCR were used to determine the character of white blood cells, specifically regulatory T cells, and to measure the expression levels of genes of interest. A second patient group (102 ALS, 28 healthy) was studied specifically to assess the predictive power of FoxP3 expression in ALS disease development. A third group consisting of deceased persons (affected and healthy) was studied for the purpose of establishing endpoints for T cell production and gene expression. Development of ALS was assessed using the Appel ALS score, a widely used standard that Appel developed.

The relationship between inflammation and ALS progression is complex. Inflammation is an important initial response to injury or microbial attack, Appel says, but prolonged inflammation can actually make the damage worse.

"While this inflammation is tolerable for the short term, when the inflammation persists, the pro-inflammatory cytokines and certain chemicals produced by glial cells called microglia will injure and eventually kill the surrounding neurons," Appel said. "Our research verifies that inflammation is accelerating disease progression, that regulatory T cells and Th2 may slow , and that modifying appears to be a viable treatment option."

Henkel and Appel said researchers are closing in on specific targets for modifying the that drives progression of the disease, and that they are closer than ever to developing new treatments for this severely debilitating condition.

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

Related Stories

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

How immune system, inflammation may play role in Lou Gehrig's disease

June 5, 2012
In an early study, UCLA researchers found that the immune cells of patients with amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, may play a role in damaging the neurons in the spinal cord. ALS is a disease of ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.