Researchers find new genetic pathway behind neurodevelopmental disorders

December 6, 2012, Douglas Mental Health University Institute

Researchers at the Douglas Mental Health University Institute, have discovered a new genetic process that could one day provide a novel target for the treatment of neurodevelopmental disorders, such as intellectual disability and autism.

The research study, which appears in the December issue of the , was led by Carl Ernst, a Douglas Institute researcher, an assistant professor in McGill's Department of Psychiatry and a Canada Research Chair in Psychiatric Genetics. Ernst and his colleagues found that genetic mutations that negatively affect brain development can occur in a gene family of previously unknown function in the human genome.

According to the , affect one in six children in industrialized countries. Impairing the growth and development of the brain or central nervous system, neurodevelopmental disorders encompass a broad range of conditions, including developmental delay, and cerebral palsy. People with neurodevelopmental disorders can experience difficulties with language, speech, learning, behaviour, motor skills and memory.

Mutations in genes are thought to underlie many neurodevelopmental disorders, but all genes important for brain development found to date are in a single pathway. Genes are coded in DNA that gives way to RNA, which gives way to protein. Proteins form the functional unit of the body and are the major players in all biological activity. Prior to the current study, all important for neurodevelopmental disorders, occured in genes that make protein.

The work of Ernst and his research team identified an important shortcut in the process of making for brain development. By sequencing the genomes of 200 people with neurodevelopmental disorders and chromosomal abnormalities, and comparing the results to more than 15,000 control samples, the researchers made a surprising discovery: some individuals had mutations in a gene that did not make protein.

"Our discovery tells us that mutations in genes that code only for RNA and do not make protein can have a functional impact and lead to neurodevelopmental abnormalities," Ernst says. "In previous studies of brain development, RNA was just considered a middle player – one that only served as a template for the production of proteins."

By opening up a new area of study involving RNA, Ernst aims to advance understanding of the underlying causes of neurodevelopmental disorders. "We hope to shine a new light on how the brain develops," he says.

Explore further: Researchers find alterations of a single gene associated with intellectual disability, epilepsy and autistic features

Related Stories

Researchers find alterations of a single gene associated with intellectual disability, epilepsy and autistic features

October 7, 2011
(Medical Xpress) -- Virginia Commonwealth University School of Medicine researchers, working with an international team of colleagues, have identified a gene that may play a role in causing a neurodevelopmental disorder that ...

Researchers discover new genes contributing to autism, links to psychiatric disorders

April 19, 2012
A new approach to investigating hard-to-find chromosomal abnormalities has identified 33 genes associated with autism and related disorders, 22 for the first time. Several of these genes also appear to be altered in different ...

Uncovering secrets of how intellect and behavior emerge during childhood

November 8, 2012
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that a single protein plays an oversized role in intellectual and behavioral development. The scientists found that mutations in a single ...

Study links deletion of brain-derived neurotrophic factor to major depression, anxiety, and obesity

October 8, 2012
McGill researchers have identified a small region in the genome that conclusively plays a role in the development of psychiatric disease and obesity. The key lies in the genomic deletion of brain-derived neurotrophic factor, ...

Mutations in autism susceptibility gene increase risk in boys

July 12, 2012
Researchers at Emory University School of Medicine have identified five rare mutations in a single gene that appear to increase the chances that a boy will develop an autism spectrum disorder (ASD).

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.