Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism

December 27, 2012

Congenital hyperinsulinism is a genetic condition where a baby's pancreas secretes too much insulin. It affects approximately one in 50,000 live births and in severe cases requires the surgical removal of all or part of the pancreas.

Researchers at the University of Exeter Medical School are the first in the world to utilise new genetic sequencing technology to sequence the entirety of a gene in order to identify mutations that cause hyperinsulinism. Previously, existing technology limited such sequencing to only part of the coding regions of the gene which meant that some mutations were missed.

Using new Illumina genetic sequencing technology, the research team led by Professor Sian Ellard has discovered novel mutations that cause hyperinsulinism. Their findings are published today, 27th December 2012, on-line by The .

The outcome will be that some infants born with hyperinsulinism will require fewer investigations, because the new technology means that for many only one genetic test will be required to determine the extent of the condition in each child. It also means that clinicians will have more information at their fingertips to inform them about how much of the pancreas needs to be removed.

Approximately 50 per cent of patients with congenital hyperinsulinism require surgery, and of those half require the entire pancreas to be removed. Removal of the entire increases the risk of diabetes later in life, but if left undiagnosed and untreated hyperinsulinism can result in irreparable brain damage. Symptoms range from shakiness and tiredness to seizure and coma.

Dr. Sarah Flanagan, Research Fellow in at the University of Exeter Medical School said: "The potential provided by this new technology is important and exciting, because it allows us to investigate genetic coding in its entirety. This means that investigators can identify mutations that sit at the heart of any number of conditions where before they might have been missed. This in turn results in better information for clinicians upon which they can base effective treatments and interventions for their patients."

Explore further: In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

Related Stories

In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

August 1, 2012
A pilot study in adolescents and adults has found that an investigational drug shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially ...

Rare genetic disorder provides clues to development of the pancreas

December 11, 2011
A rare genetic disorder has given researchers at the University of Exeter a surprising insight into how the pancreas develops. The finding provides a clue to how it may be possible to 'programme' stem cells – master ...

Diabetes can be controlled in patients after pancreas removal

August 29, 2012
Removing the entire pancreas in patients with cancer or precancerous cysts in part of the organ does not result in unmanageable diabetes—as many physicians previously believed, research at Mayo Clinic in Florida has found. ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.