Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism

December 27, 2012, University of Exeter

Congenital hyperinsulinism is a genetic condition where a baby's pancreas secretes too much insulin. It affects approximately one in 50,000 live births and in severe cases requires the surgical removal of all or part of the pancreas.

Researchers at the University of Exeter Medical School are the first in the world to utilise new genetic sequencing technology to sequence the entirety of a gene in order to identify mutations that cause hyperinsulinism. Previously, existing technology limited such sequencing to only part of the coding regions of the gene which meant that some mutations were missed.

Using new Illumina genetic sequencing technology, the research team led by Professor Sian Ellard has discovered novel mutations that cause hyperinsulinism. Their findings are published today, 27th December 2012, on-line by The .

The outcome will be that some infants born with hyperinsulinism will require fewer investigations, because the new technology means that for many only one genetic test will be required to determine the extent of the condition in each child. It also means that clinicians will have more information at their fingertips to inform them about how much of the pancreas needs to be removed.

Approximately 50 per cent of patients with congenital hyperinsulinism require surgery, and of those half require the entire pancreas to be removed. Removal of the entire increases the risk of diabetes later in life, but if left undiagnosed and untreated hyperinsulinism can result in irreparable brain damage. Symptoms range from shakiness and tiredness to seizure and coma.

Dr. Sarah Flanagan, Research Fellow in at the University of Exeter Medical School said: "The potential provided by this new technology is important and exciting, because it allows us to investigate genetic coding in its entirety. This means that investigators can identify mutations that sit at the heart of any number of conditions where before they might have been missed. This in turn results in better information for clinicians upon which they can base effective treatments and interventions for their patients."

Explore further: In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

Related Stories

In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

August 1, 2012
A pilot study in adolescents and adults has found that an investigational drug shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially ...

Rare genetic disorder provides clues to development of the pancreas

December 11, 2011
A rare genetic disorder has given researchers at the University of Exeter a surprising insight into how the pancreas develops. The finding provides a clue to how it may be possible to 'programme' stem cells – master ...

Diabetes can be controlled in patients after pancreas removal

August 29, 2012
Removing the entire pancreas in patients with cancer or precancerous cysts in part of the organ does not result in unmanageable diabetes—as many physicians previously believed, research at Mayo Clinic in Florida has found. ...

Recommended for you

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.