A key gene for brain development

December 14, 2012
A key gene for brain development

(Medical Xpress)—Neurobiologists at the Research institute of Molecular Pathology (IMP) in Vienna have discovered one of the key genes required to make a brain. Mutations in this gene, called TUBB5, cause neurodevelopmental disease in children.

About one in ten thousand babies is born with an abnormally small head. The cause for this disorder – which is known as – is a defect in the develoment of the . Children with microcephaly are severely retarded and their life expectancy is low. Certain cases of autism and schizophrenia are also associated with the dysregulation of .

The causes underlying impaired can be environmental stress (such as alcohol abuse or radiation) or viral infections (such as rubella) during pregnancy. In many cases, however, a mutant gene causes the problem.

David Keays, a group leader at the IMP, has now found a new gene which is responsible for Microcephaly. Together with his PhD-student Martin Breuss, he was able to identify TUBB5 as the culprit. The gene is responsible for making tubulins, the building blocks of the cell's internal skeleton. Whenever a cell moves or divides, it relies on guidance from this internal structure, acting like a scaffold.

The IMP-researchers, together with collaborators at Monash University (Victoria, Australia), were able to interfere with the function of the TUBB5 in the brains of unborn mice. This led to massive disturbances in the stem and impaired the migration of . Both, the generation of large numbers of neurons from the stem cell reservoir and their correct positioning in the cortex, are essential for the development of the .

To determine whether the findings are also relevant in humans, David Keays collaborates with clinicians from the Paris-Sorbonne University. The French team led by Jamel Chelly, examined 120 patients with pathological brain structures and severe disabilities. Three of the children were found to have a mutated TUBB5-gene. 

This information will prove vital to doctors treating children with brain disease. It will allow the development of new genetic tests which will form the basis of genetic counseling, helping parents plan for the future. By understanding how different genes cause brain disorders, it is hoped that one day scientists will be able to create new drugs and therapies to treat them. 

The new findings by the IMP-researchers are published in the current issue of the journal "Cell Reports". For David Keays, understanding the function of TUBB5 is the key to understanding brain development. "Our project shows how research in the lab can help improve lives in the clinic", he adds.

The paper "Mutations in the b-tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities" is published on December 13, 2012, in the online-Journal Cell Reports.

Explore further: Mutations in single gene may have shaped human cerebral cortex

Related Stories

Mutations in single gene may have shaped human cerebral cortex

April 28, 2011
The size and shape of the human cerebral cortex, an evolutionary marvel responsible for everything from Shakespeare's poetry to the atomic bomb, are largely influenced by mutations in a single gene, according to a team of ...

Researchers discover the cause of an inherited form of epilepsy

June 21, 2012
Researchers at McGill University have discovered the cause of an inherited form of epilepsy. The disease, known as double-cortex syndrome, primarily affects females and arises from mutations on a gene located on the X chromosome. ...

A VIP for normal brain development

July 1, 2011
led by Pierre Gressens, at Inserm U676, Paris, France, and Vincent Lelièvre, at CNRS UPR-3212, Strasbourg, France -- has identified a signaling pathway key for normal brain development in the mouse. Of paramount importance, ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.