Researchers describe a key mechanism in muscle regeneration

December 19, 2012, IDIBELL-Bellvitge Biomedical Research Institute

Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selective target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to develop new treatments to regenerate muscular injuries or dystrophies. The study has been published in PLOS ONE journal.

Skeletal muscle has a great regeneration capacity after injury or such as Duchenne muscular dystrophy, the most common in children. This condition is due to a defect in the gene of , which absence causes instability of the membrane and leads to degeneration of muscle fibres.

Regeneration involves the restructuration of the muscular tissue and it requires the participation of extracellular enzymes such as plasmin. The alpha-enolase, an enzyme found in the cytoplasm of cells, enables the activity of plasmin on the cell membrane giving the cell the ability to degrade the surrounding tissue.

In this study, IDIBELL researchers show that the association of alpha-enolase and plasmin regulates two connected processes in the injured muscle or dystrophy: first, the attraction (recruitment) of to remove damaged tissue and, on the other hand, the formation of new muscle tissue from the stem cells. The researchers observed in the laboratory that these stem cells lost the ability to activate and merge to form skeletal muscle fibers when specific inhibitors of the alfa-enolasa/plasmina union were applied.

The researchers also performed experiments in mice with Duchenne muscular injury. When the animals were treated with the same inhibitors, mice showed a significant defect in .

"These results demonstrate that the interaction of alpha-enolase and plasmin is necessary for the restoration of damaged muscle tissue", explained Roser López-Alemany, IDIBELL researcher and study coordinator.

Recently, an extensive proteomic meta-analysis identified the alpha-enolase as the first differentially expressed protein in both human pathologies and mouse models, suggesting that "it may be considered a marker of a pathological stress in a large number of diseases", said Lopez-Alemany.

Explore further: Potential new approach to regenerating skeletal muscle tissue

More information: Díaz-Ramos À, Roig-Borrellas A, García-Melero A, Llorens A, López-Alemany R. Requirement of Plasminogen Binding to Its Cell-Surface Receptor α-Enolase for Efficient Regeneration of Normal and Dystrophic Skeletal Muscle. PLoS ONE 7(12): e50477.

Related Stories

Potential new approach to regenerating skeletal muscle tissue

June 1, 2012
An innovative strategy for regenerating skeletal muscle tissue using cells derived from the amniotic fluid is outlined in new research published by scientists at the UCL Institute of Child Health.

From degeneration to regeneration: Advances in skeletal muscle engineering

November 26, 2012
A study published today in BioMed Central's open access journal Skeletal Muscle reports of a new therapeutic technique to repair and rebuild muscle for sufferers of degenerative muscle disorders. The therapy brings together ...

Recommended for you

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.