Targeting neurotransmitter may help treat gastrointestinal conditions

December 4, 2012

Selective targeting of the neurotransmitter that differentially affects brain cells that control the two distinct functions of the pancreas may allow for new medication therapies for conditions like diabetes, dyspepsia and gastro-esophageal reflux, according to Penn State College of Medicine researchers.

"This study differs from what's been reported previously about that control the gastrointestinal tract," said R. Alberto Travagli, professor, Department of Neural and Behavioral Sciences, and lead investigator. "It provides further support to the idea that separate pathways regulate the diverse functions of organs along the upper gastrointestinal tract."

The pancreas has two functional parts: one that releases , and one that releases hormones like insulin and glucagon. The vagus nerve, which originates in the brain, regulates both of these pancreatic functions. This nerve detects chemical and that occur along the gastrointestinal tract and interprets and integrates these signals before sending appropriate responses back to the organs. In the brain, these signals tell the nerves controlling each specific organ what the proper response is—for example, digestive processes and —according to the signals detected in the GI tract.

and in organs like the pancreas control the nerve networks that receive these signals. Neurotransmitters are chemicals released from nerves that allow them to communicate with each other as well as with organs of the body. One of these neurotransmitters is glutamate, which acts on specific proteins called receptors that are present on the nerve cells. There are different classes and types of receptors that glutamate can act upon; one major class of these receptors is metabotropic glutamate receptors (mGluRs). This class is further divided into three subgroups—I, II or III—depending on their location and function on the nerve cells.

"The aim of this study was to investigate how these mGluRs are organized on nerve synapses—the specialized structures that allow a signal to pass from one cell to another cell," Travagli said. "The second aim of the study was to see whether pancreatic insulin and enzyme secretions are controlled by different types of vagal motoneurons—the cells of the nervous system that control motor functions of the pancreas through the vagus nerve."

Group II and III mGluRs are present in synapses that can either excite or inhibit the vagal that send signals to the pancreas, and different outcomes can be seen depending on which group of mGluRs glutamate acts upon. When glutamate acts upon either group II or group III mGluR, insulin secretion is decreased. Pancreatic enzyme secretion is increased only by activation of group II mGluR by glutamate.

"The data shows mGluRs on brainstem vagal nerve circuits that regulate pancreatic functions are organized in a very specific manner," Travagli said. "This type of separation in their organization may allow for development of selective drugs that target very specific vagal neurocircuits in patients with such conditions as gastrointestinal reflux disorders, functional dyspepsia, gastroparesis and pancreatic exocrine or endocrine dysfunctions."

Explore further: X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

More information: Researchers published results in a recent issue of The Journal of Physiology.

Related Stories

X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

October 19, 2011
Scientists at Cold Spring Harbor Laboratory (CSHL) have solved part of a puzzle concerning the relationship between changes in the strength of synapses – the tiny gaps across which nerve cells in the brain communicate ...

The architects of the brain: Scientists decipher the role of calcium signals

October 26, 2011
German neurobiologists have found that certain receptors for the neurotransmitter glutamate determine the architecture of nerve cells in the developing brain. Individual receptor variants lead to especially long and branched ...

New research reveals brain's protection mechanism during stroke

August 16, 2011
Neuroscientists have identified a natural protection mechanism in some of the brain's nerve cells during the onset of stroke. The findings, published today in the Journal of Neuroscience, could be used to develop treatments ...

Newly discovered scaffold supports turning pain off

July 27, 2012
(Medical Xpress) -- Johns Hopkins scientists have discovered a "scaffolding" protein that holds together multiple elements in a complex system responsible for regulating pain, mental illnesses and other complex neurological ...

Nerve growth factors elevated in pancreatic cancer model

June 19, 2012
Severe pain is a major symptom of pancreatic cancer. The results of a new study show that four different factors involved in the growth and maintenance of nerves are elevated in a mouse model of pancreatic cancer. This is ...

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.