PET imaging used to more accurately manage treatment, predict survival for patients with gliomas

December 3, 2012

In the management of gliomas—or tumors that originate in the brain—precise assessment of tumor grade and the proliferative activity of cells plays a major role in determining the most appropriate treatment and predicting overall survival. Research published in the December issue of The Journal of Nuclear Medicine (JNM) highlights the potential of imaging with 3'-deoxy-3'-F-18-fluorothymidine (F-18-FLT) positron emission tomography (PET) to noninvasively and accurately provide tumor-specific details to guide management of patients with gliomas.

are uncommon , and most are diffuse tumors that grow quickly. Patients with glioblastoma, the most malignant and most frequent type of glioma, typically die within two years. Ensuring the most appropriate treatment in a timely manner is of utmost importance for these patients.

Two studies in the December issue of JNM explore the utility of F-18-FLT PET for providing prognostic information for patients with gliomas. "The accumulation of F-18-FLT is dependent on the presence of thymidine -1, which is closely associated with . In several clinical studies, F-18-FLT has been validated for evaluation of tumor grade and cellular proliferation in gliomas," noted Yuka Yamamoto, MD, lead author of the study, "Correlation of 18F-FLT Uptake with Tumor Grade and Ki-67 in Patients with Newly Diagnosed and Recurrent Gliomas."

In the study led by Yamamoto, researchers retrospectively evaluated F-18-FLT uptake in patients with newly diagnosed (36 patients) and recurrent (20 patients) gliomas. Patients underwent F-18-FLT PET scans; tissue specimens were then taken to obtain a pathological diagnosis. The F-18-FLT images were analyzed by two nuclear medicine physicians, who identified tumor lesions as areas of focally increased uptake exceeding that of normal brain background, and who determined the tumor-to-normal (T/N) ratio. Results the 18-F-FLT were compared with tumor grade and proliferative activity estimated from the .

Researchers found that there was significant difference in the T/N ratio among different grades of newly diagnosed and recurrent gliomas. F-18-FLT uptake correlated more strongly with the proliferative activity in newly diagnosed gliomas than in recurrent gliomas and provided a more comprehensive view to determine tumor grade as compared to a single tissue specimen.

The correlation between proliferative volume and prediction of overall survival for high-grade glioma patients was also examined in the article "3'-Deoxy-3'-18F-Fluorothymidine PET-Derived Proliferative Volume Predicts Overall Survival in High-Grade Glioma Patients." In the study, 26 consecutive patients underwent preoperative 18-F-FLT PET/computed tomography (CT) scans. The maximum standardized uptake value (SUVmax) was calculated and three different PET segmentation methods were used to estimate the proliferative volume. The prognostic value of the SUVmax and the different methods to approximate proliferative volume for overall survival were then assessed.

The mean overall survival for the patients in the study was 397 days; 19 patients died during this time. Based on this follow-up information, researchers determined that the signal-to-background ration (SBR) for an adaptive threshold delineation (PVSBR) method showed a significantly better association with overall survival then the SUVmax or the other two PET segmentation methods.

"The predictive value of the proliferative volume for the overall survival of patients seems to be independent of the postoperative treatment," explained Albert J.S. Idema, MD, lead author of the study. "The importance for patients is the possible utilization of 18-F-FLT PET to select the most appropriate treatment options. The very limited burden that the procedure causes to the patient is a further asset."

The development of new molecular imaging agents, such as F-18-FLT, which is currently used only for research purposes, has enabled clinical researchers to utilize the agents to assess the characteristics of tumors and their therapeutic response. "We hope that these findings will be helpful for identifying the role of F-18-FLT in assessing the response to antiproliferative treatment in patients with gliomas," said Yamamoto.

Explore further: PET predicts early response to treatment for head and neck cancer patients

Related Stories

PET predicts early response to treatment for head and neck cancer patients

October 1, 2012
Determining the optimal treatment course and predicting outcomes may get easier in the future for patients with head and neck sqaumous cell carcinomas (HNSCCs) with the use of an investigational imaging agent. Research published ...

PET technique promises better detection and response assessment for Non-Hodgkin's lymphoma

December 21, 2011
Positron emission tomography (PET) and a molecular imaging agent that captures the proliferation of cancer cells could prove to be a valuable method for imaging a form of Non-Hodgkin's disease called mantle cell lymphoma, ...

Pretreatment PET/CT imaging of lymph nodes predicts recurrence in breast cancer patients

September 4, 2012
Disease-free survival for invasive ductal breast cancer (IDC) patients may be easier to predict with the help of F-18-fludeoxyglucose positron emission tomography (PET)/computed tomography (CT) scans, according to research ...

PET quickly predicts success of brain cancer treatment

June 11, 2012
A study revealed at the Society of Nuclear Medicine's 59th Annual Meeting provides some hope for those with a malignant brain cancer called glioma.A method of molecular imaging that mimics an essential amino acid in the brain ...

PET tracer changes management plan for brain tumor patients

March 1, 2012
Imaging amino acid transporters with positron emission tomography/computed tomography (PET/CT) has been shown to significantly alter intended management plans for patients with brain tumors, according to research in the March ...

Scientists find potential benefit of hypericin for recurrent brain tumors

April 11, 2011
Researchers have found that a synthetic version of hypericin, a compound naturally found in St. John's wort, may be a promising treatment for patients with recurrent malignant brain tumors. Their findings were published online ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.