Predictors of cancer disease progression improve patient selection for metastasis-directed therapy

December 11, 2012

Tumor metastasis, the ability of cancer cells to migrate from their tissue of origin and colonize elsewhere in the body, accounts for over 90% of cancer deaths. When patients die from cancer, it is usually caused by distant metastases established by malignant cells that split off from the primary cancer and began growing in new settings.

Scientists from the Ludwig Center at the University of Chicago hypothesized over 15 years ago that an intermediate state of tumor spread or metastasis exists between patients with extensive metastasis and patients whose disease stays confined to one local tumor with no spread. The scientists termed this intermediate state oligometastasis or metastasis limited in number and location. They then demonstrated that some patients with oligometastasis can be cured with therapies – including surgery and radiotherapy – that are directed locally at the metastasis.

In a paper published December 10 in , the Ludwig investigators led by Dr. Ralph Weichselbaum in collaboration with Dr. Yves Lussier at the University of Illinois, took their research a step further. They analyzed patients with lung metastasis who underwent surgical resection with curative intent.

What they found was that some patients were cured, some developed rapid metastasis, and some developed metastasis at a very slow rate of progression. They then asked themselves what accounted for these radical differences in patient outcomes.

The answer: microRNAs or small molecules that suppress or . The investigators had pinpointed the culprit. They identified the microRNAs associated with oligometastatic progression and then found that these microRNAs differ from those associated with patients who developed widespread metastatic disease.

The microRNAs associated with oligometastasis have tumor suppressor characteristics that differ from microRNAs associated with patients who developed widespread . The results demonstrate a biological basis for oligometastasis and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

"With these findings, we are now able to use microRNA expression to characterize oligometastasis and ultimately better select patients with tumor metastasis for curative interventions," said study author Ralph Weichselbaum, MD, director of the Ludwig Center for Metastasis Research at the University of Chicago. "Also understanding the molecular basis of will allow for the targeting of specific biological processes to treat patients with more advanced tumor spread."

Explore further: Molecular markers can predict spread of cancer, guide treatment

Related Stories

Molecular markers can predict spread of cancer, guide treatment

December 13, 2011
Molecular markers found in cancer cells that have spread from a primary tumor to a limited number of distant sites can help physicians predict which patients with metastatic cancer will benefit from aggressive, targeted radiation ...

Researchers identify key role of microRNAs in melanoma metastasis

July 11, 2011
Researchers at the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously ...

Some tumors contain factors that may block metastasis

November 14, 2011
Scientists are another step closer to understanding what drives tumor metastasis, as laboratory models suggest there are factors inside tumors that can slow their own growth.

New signaling pathway linked to breast cancer metastasis

April 2, 2012
Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

Recommended for you

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.