Previously unknown mechanism identified in oncogene-induced senescence

December 12, 2012

Cell aging, or cellular senescence, has an important role in the natural physiological response to tumor development. Activated oncogenes are able to induce senescence, and recent findings have suggested that oncogene-induced senescence (OIS) could play a key role in future cancer therapy. Researchers have now identified a previously unknown mechanism in the regulation of OIS. This study is published online in advance of the January issue of The American Journal of Pathology.

In many types of normal cells, OIS depends on induction of . Oxidative stress and hyper-replication of genomic DNA have already been proposed as major causes of DNA damage in OIS cells. A group of investigators from New York, Oregon, and Michigan reports that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage. In normal human cells, "OIS represents an important fail-safe mechanism that suppresses proliferation of pre-," explains lead investigator Dr Mikhail Nikiforov, PhD, Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York. "Compelling evidence suggests that one of the intrinsic processes required for the induction of OIS is the cellular response to DNA damage."

The group investigated endogenous processes that caused DNA damage in human fibroblasts undergoing OIS and demonstrated that DNA damage, at least partially, originates from under-expression of key enzymes involved in deoxyribonucleoside biosynthesis and subsequent depletion of endogenous deoxyribonucleoside triphosphate (dNTP) pools. They found that even partial restoration of depleted intracellular dNTP pools is sufficient for substantial suppression of DNA damage and senescence.

"We believe our data identify a previously unknown role of deoxyribonucleotides in regulation of oncogene-induced senescence. Our results suggest that both nucleotide depletion and active are required for efficient induction of DNA damage and OIS," he concludes.

Explore further: Researchers demonstrate why DNA breaks down in cancer cells

More information: "Depletion of Deoxyribonucleotide Pools Is an Endogenous Source of DNA Damage in Cells Undergoing Oncogene-Induced Senescence," by Sudha Mannava, Kalyana C. Moparthy, Linda J. Wheeler,Venkatesh Natarajan, Shoshanna N. Zucker, Emily E. Fink, Michael Im, Sheryl Flanagan, William C. Burhans, Nathalie C. Zeitouni, Donna S. Shewach, Christopher K. Mathews, and Mikhail A. Nikiforov. dx.doi.org/10.1016/j.ajpath.2012.09.011. It appears in The American Journal of Pathology, Volume 182, Issue 1 (January 2013)

Related Stories

Researchers demonstrate why DNA breaks down in cancer cells

May 3, 2011
Damage to normal DNA is a hallmark of cancer cells. Although it had previously been known that damage to normal cells is caused by stress to their DNA replication when cancerous cells invade, the molecular basis for this ...

Scientists identify protein that improves DNA repair under stress

June 16, 2011
Cells in the human body are constantly being exposed to stress from environmental chemicals or errors in routine cellular processes. While stress can cause damage, it can also provide the stimulus for undoing the damage. ...

Researchers and colleagues identify PHF20, a regulator of gene P53

August 24, 2012
Researchers at Moffitt Cancer Center and colleagues have identified PHF20, a novel transcriptional factor, and clarified its role in maintaining the stability and transcription of p53, a gene that allows for both normal cell ...

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.