Researcher advancing motor neuron studies

January 29, 2013 by Carolyn Pennington
Xue-Jun Li, Department of Neuroscience, is using stem cells to study the devastating condition known as spinal muscular atrophy. Credit: Tina Encarnacion/UConn Health Center Photo

A University of Connecticut researcher is advancing the understanding of the devastating inherited condition known as spinal muscular atrophy.

Xue-Jun Li, assistant professor in the Department of Neuroscience, is corresponding author of a paper published in the prestigious journal Cell Research in December 2012 entitled "Recapitulation of spinal motor neuron-specific in a human cell model of spinal muscular atrophy." The paper's other authors are UConn Health Center researcher Zhi-Bo Wang and Xiaoqing Zhang of the Tongji University School of Medicine in Shanghai.

Spinal (SMA) is a group of inherited diseases that cause and debilitation, which progress over time and eventually lead to death. To be affected, a person must inherit the from both parents. About 1 in 10,000 people have SMA, and most do not survive childhood due to , and infections.

"There is no effective treatment for , and one of the roadblocks is not knowing why the spinal motor neuron degenerates," Li explains. "One of the aspects of our research is to understand how specific types of neurons are specified and degenerated. We are trying to model neurological disorders by using human motor neurons derived from ."

Establishing human cell models of SMA to mimic motor neuron-specific phenotypes holds the key to understanding this destructive disease, she says. The model described in the journal article provides a unique paradigm for studying how motor neurons degenerate. It also highlights the potential importance of antioxidants for the treatment of SMA.

Understanding how are specifically degenerated can lead to effective interventions in the future. "It can help us find some way to rescue the motor neuron degeneration in this disease," Li points out. "Understanding the role of antioxidants can provide potential clues to finding a treatment."

Li's interest in medicine began in high school when she considered a career as a physician, but she refocused on medical research as a college undergraduate in Shanghai. She describes her cousin's battle with a neurological disease as the trigger for her concentration in that field. "It made me really want to find some cures and understand the disease," she says. "I wanted to do something that improves general health."

Li moved to the U.S. in 2002 and worked for five years as a researcher at the University of Wisconsin in Madison. She was drawn to the University of Connecticut because of the state's stem cell research grant program and the university's creation of a Stem Cell Institute. Now there are even more opportunities with the commitment of state leaders to support genomics and personalized medicine, and The Jackson Laboratory construction of a major research facility on the Health Center's campus.

"That's why UConn was so attractive to me," she says. "There was strong support for my research. I applied for a grant from the state and got it right away. I feel very lucky to be here."

Explore further: Researchers, with stem cells, advance understanding of spinal muscular atrophy

Related Stories

Researchers, with stem cells, advance understanding of spinal muscular atrophy

June 20, 2012
Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat ...

New research sheds light on childhood neuromuscular disease

November 20, 2012
A study by scientists at the Motor Neuron Center at Columbia University Medical Center suggests that spinal muscular atrophy (SMA), a genetic neuromuscular disease in infants and children, results primarily from problems ...

Researchers find new insight into spinal muscular atrophy

September 26, 2011
Researchers at the University of Missouri have identified a communication breakdown between nerves and muscles in mice that may provide new insight into the debilitating and fatal human disease known as spinal muscular atrophy ...

Researchers identify genetic mutation causing rare form of spinal muscular atrophy

May 10, 2012
Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, ...

Recommended for you

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.