Androgenic hormones could help treat multiple sclerosis, study finds

January 30, 2013

Testosterone and its derivatives could constitute an efficient treatment against myelin diseases such as multiple sclerosis, reveals a study by researchers from the Laboratoire d'Imagerie et de Neurosciences Cognitives. Myelin composes the sheaths that protect the nerve fibers and allow the speed of nerve impulses to be increased. A deficit in the production of myelin or its destruction cause serious illnesses for which there is no curative treatment. The researchers have shown that in mice brains whose nerve fibers have been demyelinated, testosterone and a synthetic analog induce the regeneration of oligodendrocytes, the cells responsible for myelination, and that they stimulate remyelination. This work is published on January in the journal Brain.

Multiple sclerosis (MS) is a degenerative disease of myelin, which is accompanied by severe inflammation of the central nervous system. Affecting around 80,000 people in France, it is characterized by motor and and by neurological impairments such as elocution difficulties. MS is also known to have a hormonal component. In fact, women are twice as susceptible as men, even though the prognosis is less good for males. In addition, it has been observed that pregnant women suffering from MS do better during pregnancy when their hormone levels are high. The team headed by Dr Said Ghandour had already demonstrated the protective effect of testosterone on oligodendrocytes (the cells responsible for ).

For this study, the researchers firstly induced chronic demyelination of the nerve fibers in the brain of mice. To do this, they added cuprizone, a molecule that sequesters copper, to their diet. The mice then exhibited chronic , analogous to that observed during the progressive phase of MS. They were then treated with testosterone for 6 to 9 weeks. As a result, their nerve fibers were once again myelinated and their symptoms were remarkably alleviated. The same effects were obtained using a synthetic testosterone analogue, 7-alpha-methyl-19-nortestosterone (MENT).

The researchers then showed that these androgens bring about the transformation of neural stem cells into oligodendrocytes and promote the synthesis of myelin by oligodendrocytes, thus maintaining the integrity of the nerve fibers. They then repeated the experiment, but this time using two transgenic mouse strains: one with a mutated androgen receptor and the other with a receptor that had been selectively inactivated in the . In these androgen-insensitive mice, testosterone did not stimulate remyelination of the .

These results identify the androgen receptor as a promising therapeutic target for treating diseases such as MS. They open the way to the use of androgens-including that of testosterone analogues such as MENT, which is well tolerated in humans-to promote the regeneration of myelin. Further work will focus on the possibility of using testosterone blood levels as biomarkers to evaluate the progression of demyelinating diseases.

Explore further: Hopes for reversing age-associated effects in MS patients

More information: Hussain, R. et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination, Brain, January 2013. Volume 136(1): pages 132-146. doi:10.1093/brain/aws284

Related Stories

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Mayo Clinic uses new approach to reverse multiple sclerosis in mice models

June 28, 2012
Mayo Clinic researchers have successfully used smaller, folded DNA molecules to stimulate regeneration and repair of nerve coatings in mice that mimic multiple sclerosis (MS). They say the finding, published today in the ...

Changes in nerve cells may contribute to the development of mental illness

November 28, 2012
Reduced production of myelin, a type of protective nerve fiber that is lost in diseases like multiple sclerosis, may also play a role in the development of mental illness, according to researchers at the Graduate School of ...

Scientists identify inhibitor of myelin formation in the central nervous system

November 20, 2012
Scientists at the Mainz University Medical Center have discovered another molecule that plays an important role in regulating myelin formation in the central nervous system. Myelin promotes the conduction of nerve cell impulses ...

Study sheds light on role of exercise and androgens such as testosterone on nerve damage repair

October 15, 2012
A study by researchers from Emory University and Indiana University found that the beneficial effects daily exercise can have on the regeneration of nerves also require androgens such as testosterone in both males and females. ...

Recommended for you

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.