How the brain copes with multi tasking alters with age

January 17, 2013, BioMed Central

The pattern of blood flow in the prefrontal cortex in the brains alters with age during multi-tasking, finds a new study in BioMed Central's open access journal BMC Neuroscience. Increased blood volume, measured using oxygenated haemoglobin (Oxy-Hb) increased at the start of multitasking in all age groups. But to perform the same tasks, healthy older people had a higher and more sustained increase in Oxy-Hb than younger people.

Age related changes to the brain occur earliest in the prefrontal cortex, the area of the brain associated with memory, emotion, and higher decision making functions. It is changes to this area of the brain that are also associated with dementia, depression and other neuropsychiatric disorders. Some studies have shown that and cognitive training can prevent (use it or lose it!) but to establish what occurs in a healthy researchers from Japan and USA have compared brain activity during single and dual tasks for young (aged 21 to 25) and older (over 65) people.

Near (NIRS) measurements of Oxy-Hb showed that blood flow to the prefrontal cortex was not affected by the physical task for either age group but was affected by the mental task. For both the young and the over 65s the start of the calculation task coincided with an increase in blood volume which reduced to baseline once the task was completed.

The main difference between the groups was only seen when performing the physical and mental tasks at the same time - older people had a higher prefrontal cortex response which lasted longer than the younger group.

Hironori Ohsugi, from Seirei Christopher University, and one of the team who performed this research explained "From our observations during the dual task it seems that the older people turn their attention to the calculation at the expense of the physical task, while younger people are able to maintain concentration on both. Since our subjects were all healthy it seems that this requirement for increased activation of the is part of normal decrease in brain function associated with aging. Further study will show whether or not dual task training can be used to maintain a more youthful brain."

Explore further: Researchers gain new insight into prefrontal cortex activity

More information: Differences in dual-task performance and prefrontal cortex activation between younger and older adults Hironori Ohsugi, Shohei Ohgi, Kenta Shigemori and Eric B Schneider, BMC Neuroscience (in press)

Related Stories

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Shedding light on memory deficits in schizophrenic patients and healthy aged subjects

February 23, 2012
Working memory, which consists in the short-term retention and processing of information, depends on specific regions of the brain working correctly. This faculty tends to deteriorate in patients with schizophrenia, as it ...

Study shows cognitive benefit of lifelong bilingualism

January 8, 2013
Seniors who have spoken two languages since childhood are faster than single-language speakers at switching from one task to another, according to a study published in the January 9 issue of The Journal of Neuroscience. ...

Researchers show how memory is lost -- and found

July 27, 2011
Yale University researchers can't tell you where you left your car keys- but they can tell you why you can't find them.

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.