Study sheds light on how our brains move limbs

January 16, 2013, Queen's University

(Medical Xpress)—A Queen's University study is giving new insight into how the neurons in our brains control our limbs. The research might one day help with the design of more functional artificial limbs.

"We've taken a step closer to understanding how our arms and legs work and how we move our bodies," says neuroscience researcher Tim Lillicrap, who worked with neuroscience professor Stephen Scott on the study.

The researchers used a novel network model, coupled with a computer biophysics model of a limb, to explain some of the prominent patterns of neural activity seen in the brain during movements.

The findings refine previous notions of how neurons in the primary motor cortex fire and drive muscles. The is the region of the brain that sends the largest number of connections to the spinal cord.

When moving an arm or a leg, are sent along to control the movement of limbs. Different movements require different patterns of nerve impulses—the relationship between these neural patterns and the resulting movements is poorly understood.

The study demonstrates that the patterns of activity are related to specific details of the limb physics—for example, the patterns of are tuned (or optimized) for muscle architecture and limb geometry.

Dr. Lillicrap, who did the study as part of his Phd thesis at Queen's and is now a post-doctoral fellow at Oxford University in England, says better understanding of how the brain controls limbs will help develop in the future.

The study has been published in the latest issue of the journal Neuron.

Explore further: Eye movement not engaged in arms race, researchers find

Related Stories

Eye movement not engaged in arms race, researchers find

February 28, 2012
We make our eye movements earlier or later in order to coordinate with movements of our arms, New York University neuroscientists have found. Their study, which appears in the journal Neuron, points to a mechanism in the ...

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.