Diabetic fruit flies support buzz about dietary sugar dangers

January 17, 2013
Cardiac fibrosis (shown in purple), a hallmark of heart disease, is clearly increased in fruit flies on a high-sugar diet (right), as compared to flies on a normal diet (left). Credit: Sanford-Burnham Medical Research Institute

Regularly consuming sucrose—the type of sugar found in many sweetened beverages—increases a person's risk of heart disease. In a study published January 10 in the journal PLOS Genetics, researchers at Sanford-Burnham Medical Research Institute and Mount Sinai School of Medicine used fruit flies, a well-established model for human health and disease, to determine exactly how sucrose affects heart function. In addition, the researchers discovered that blocking this cellular mechanism prevents sucrose-related heart problems.

"Our study reveals a number of specific sugar-processing enzymes that could be targeted with therapies aimed at reducing sucrose's unhealthy effects on the heart," said Karen Ocorr, Ph.D., research assistant professor at Sanford-Burnham and the study's corresponding author.

Diabetic fruit flies with heart problems

The research team was the first to model heart disease caused by type 2 diabetes in fruit flies. They achieved this simply by feeding the flies a diet high in sucrose. High-sucrose flies showed many classic signs of human type 2 diabetes, including and insulin signaling defects. The team also saw signs of diabetes-induced heart malfunction in these flies—deteriorating , and fibrosis.

Next the researchers wanted to know exactly what sucrose is doing inside the flies' cells that makes it harmful to hearts. To answer this question, they looked for that are triggered or altered by sucrose.

The team eventually pinpointed one particular biochemical system, called the hexosamine pathway. This series of biochemical reactions normally plays only a minor role in the way cells process sugar to produce energy. But some research also suggests that the hexosamine pathway is linked to diabetes in humans.

"It's remarkable that we're able to use the fruit fly as a discovery tool for elucidating basic , not only of many types of heart disease, but also dietary influences that help us understand what happens in human hearts," added Rolf Bodmer, Ph.D., professor at Sanford-Burnham and a senior author of the study.

Dampening sugar's negative effect on the heart

The researchers further probed the hexosamine pathway in their new diabetes model. They found that artificially increasing sucrose-processing via the hexosamine pathway harms the heart. In contrast, when they specifically blocked this pathway, they prevented some of the high-sucrose induced heart defects, such as cardiac arrhythmias.

"Diet-induced heart damage is one of our society's most serious health issues. Our flies now give us a tool to explore the role of high dietary sugar, and the means to identify treatments in the context of the whole body," said Ross Cagan, Ph.D., professor at Mount Sinai School of Medicine and a senior author of this study.

Related Stories

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.