New discovery shows genetic causes of rare bone condition

January 29, 2013, Oxford University
New discovery shows genetic causes of rare bone condition
DNA sequencing of more than 400 families identified two new genetic causes of craniosynostosis.

(Medical Xpress)—Researchers at the University of Oxford have discovered two new genetic causes of craniosynostosis, a rare bone condition that can inhibit brain growth in children.

The work will give affected families much greater understanding of the condition and inform patient treatment plans.

Andrew Wilkie, Nuffield Professor of Pathology at the University of Oxford and honorary consultant at Oxford University Hospitals NHS Trust, led the research, the results of which were published in the journal Nature Genetics.

The study was based on from more than 400 families treated at the specialist Craniofacial Unit at Oxford's John Radcliffe Hospital over a twenty year period. Every gene in each family member's DNA was then sequenced in full at the University of Oxford, allowing two new genetic causes of craniosynostosis to be identified.

The research was supported by the Wellcome Trust, with additional funding from the National Institute for Health Research Oxford Biomedical Research Centre, a collaboration between the Oxford University Hospitals NHS Trust and the University of Oxford.

Around 1 in 2,200 children are born with craniosynostosis, a condition where the bony plates of the skull – known as sutures – are fused, leading to an abnormally shaped head. In some cases, the fusing of the sutures does not leave enough space for the growing brain. This can increase pressure inside the skull and cause hearing, vision and breathing difficulties.

About 21 per cent of craniosynostosis cases have a . The identification of two new genetic conditions takes that to around 24 per cent. The two new genetic conditions are each believed to account for one to two per cent of craniosynostosis cases.

The researchers predict that around 30 per cent of cases have a genetic cause, with the remaining 70 per cent partly attributable to physical complications during pregnancy.

The conditions with a genetic cause carry a risk of being inherited and, in most cases, are more severe forms of craniosynostosis.

Identifying genetic causes and grouping together patients with the same underlying condition allows medical staff to identify specific characteristics. The process also gives individual families a greater understanding of the condition and allows treating consultants to be alert to potential future issues in individual cases.

A characteristic of the first newly-identified – known as ERF – is that complications become apparent much later in childhood, at around age four of five, compared to the majority of craniosynostosis conditions, which are apparent at or shortly after birth. Complications associated with the ERF gene then quickly become more serious if it is not recognised and treated.

With the second type of genetic condition – known as TCF12 – complications present almost immediately and require surgery. However, complications then tail off and most patients have a good long term prognosis.

Professor Andrew Wilkie said: 'If consultants know the underlying then they know what to look out for and they have a case management plan that is alert to the possible complications.

'It is about being fully aware of the condition, the characteristics, the cause and risks including the risk of it being inherited.'

Professor Wilkie was the first to characterise Apert Syndrome (one of the most severe forms of craniosynostosis) in 1995. He said: 'There is a very close working relationship between surgeons, geneticists and the rest of the craniofacial team based at Oxford's John Radcliffe Hospital. This is only possible within the NHS, and it is made possible by harnessing those strengths along with recent advances in genetics that allow us to sequence far more genes, more quickly.

'In the past couple of years, our team has discovered four new genetic types of craniosynostosis, and through ongoing research we are working on a further three. To put that in context, it is about equal to what the entire world effort has been able to describe in the past 20 years.'

Explore further: Sequencing of 500 genomes brings personalized medicine closer

Related Stories

Sequencing of 500 genomes brings personalized medicine closer

August 4, 2011
The genomes of 500 people with a range of diseases – including cancer, immunological disorders, and rare inherited diseases – are to be sequenced in full detail thanks to a new collaboration between the ...

Research discovers likely basis of birth defect causing premature skull closure in infants

November 18, 2012
An international team of geneticists, pediatricians, surgeons and epidemiologists from 23 institutions across three continents has identified two areas of the human genome associated with the most common form of non-syndromic ...

Craniosynostosis, delayed tooth eruption and supernumerary teeth -- one gene in background

July 7, 2011
Researchers have described a new, recessively inherited human syndrome featuring craniosynostosis, maxillary hyperplasia, delayed tooth eruption and extra teeth. They also identified causative mutations in a gene IL11RA.

Developing technologies to improve the treatment of craniosynostosis in children

September 6, 2011
Engineers and surgeons are working together to improve the treatment of babies born with craniosynostosis, a condition that causes the bone plates in the skull to fuse too soon. Treating this condition typically requires ...

Animation used to help explain the impact of genetics for patients

October 4, 2012
Meet Ossie: a friendly green popsicle who has already been fired through the LHC and frozen to absolute zero in a bid to explain cutting edge science.

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.