Epigenomic abnormalities predict patient survival in non-Hodgkins lymphoma

January 10, 2013

Think of the epigenome like a giant musical mixing board, turning up or down the expression of various genes. A University of Colorado Cancer Center study published today in the journal PLOS Genetics shows that in cancer, not only can genes themselves go bad, but abnormal changes in the epigenetic mixing board can unfortunately change the expression of these genes. Researchers hope to play the role of sound engineers, controlling these harmful epigenomic changes to turn down cancer itself or perhaps sensitize cancers to existing drugs.

The epigenome's primary tool – and by far the easiest to study – is methylation: it attaches little to near the genes to silence or promote their expression.

"Not only do we see more abnormal methylation in non-Hodgkin than in healthy B-, but there are three distinct subtypes of the disease in the clinic, each more aggressive than the next. These three clinical of non-Hodgkins lymphoma were distinctly marked by their levels of abnormal methylation," says Subhajyoti De, PhD, CU Cancer Center investigator and assistant professor at the CU School of Medicine.

In other words, methylation patterns predict patient survival. Here's how it works:

DNA should be methylated in a consistent way – you get a certain, standardized amount of methyl "residue" attached to your genes. Sure enough, that's the case in healthy B-cells. Subhajyoti and colleagues show that in cancerous B-cells, the level of from cell to cell varies wildly. And the more wildly the level of DNA methylation varies, the more aggressive is the cancer. It's as if, in the body, you want a consistent epigenome that maintains the methylation of the healthy status quo –when a willy-nilly epigenome drops methylation randomly here and there, it promotes non-normal cells, like cancer.

So abnormal methylation is certainly correlated with not only cancer, but with the aggressive behaviors of cancer subtypes. But what exactly is the functional role of this methylation?

"We think that in addition to genetic mutations that cause cancer, epigenetic changes probably play a subtle role that allows the cancer to thrive within our body," Subhajyoti says.

There are drugs that affect the epigenome's ability to methylate and so control genes – some of which crescendo or decrescendo the amount of methylation across the board, and some of which affect the amount of methylation on certain genetic products. Does one of these drugs hold the key to muting cancer?

Subhajyoti hopes to find out.

"For the last 50 years, the scientific community pushed to identify the genetic drivers of cancer, but now in the past five or six years we've expanded the search into the epigenome as well," Subhajyoti says. "We now expect to find that both genetic and epigenetic abnormalities are important for initiation and maintenance of cancer."

Explore further: New insights into why humans are more susceptible to cancer and other diseases

Related Stories

New insights into why humans are more susceptible to cancer and other diseases

August 23, 2012
Chimpanzees rarely get cancer, or a variety of other diseases that commonly arise in humans, but their genomic DNA sequence is nearly identical to ours. So, what's their secret? Researchers reporting in the September issue ...

Researchers complete the first epigenome in Europe

May 30, 2012
A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has ...

Researchers discover biomarkers for prostate cancer detection, recurrence

May 14, 2012
Alterations to the "on-off" switches of genes occur early in the development of prostate cancer and could be used as biomarkers to detect the disease months or even years earlier than current approaches, a Mayo Clinic study ...

Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012
In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Cancer cells' universal 'dark matter' exposed

June 26, 2011
Using the latest gene sequencing tools to examine so-called epigenetic influences on the DNA makeup of colon cancer, a Johns Hopkins team says its results suggest cancer treatment might eventually be more tolerable and successful ...

Recommended for you

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...

A new approach to high insulin levels

September 18, 2017
Diabetes is characterised by a deficiency of insulin. Its opposite is a condition called congenital hyperinsulinism—patients produce the hormone too frequently and in excessive quantities, even if they haven't eaten any ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.