New study confirms immune cells are guided by gradients

January 18, 2013 by Lin Edwards report
The outlines of cells constituting the lymphatic vessel are marked in green and the chemokine CCL21 which is deposited in these vessels is blue. Red color demarcates all vessels - lymphatic and blood vessels. Credit: Michele Weber and Michael Sixt

(Medical Xpress)—A group of researchers in Austria and Switzerland has for the first time proven that immune cells migrate along chemical concentration gradients. This process has long been assumed but never demonstrated experimentally in living tissues.

Immune cells are known to leave the blood stream and migrate through tissues in search of bacteria, viruses, and other invaders, and then enter lymphatic vessels and return to the . Now the new research confirms exactly how they move through the tissues and find their way out again.

It was thought that immune cells are guided through tissues along gradients of chemokines, which are a class of proteins secreted by cells and known to guide the movement of cells during embryonic development. are also thought to follow the same gradients to disseminate in the body. This process had been assumed and demonstrated in but had never before proven in vivo.

The researchers, led by Assistant Professor Michael Sixt of the Institute of Science and Technology Austria, studied interstitial (a type of leukocyte or white blood cell) in the skin of mice and a chemokine called CCL21. Through quantitative imaging, they were able to watch the cells navigating through the tissues.

Chemokines were formerly known as cytokines, and there are several different families of these proteins. The C-C chemokines are so called because they have two adjacent cysteines. In humans, CCL21, or Chemokine (C-C motif) ligand 21, is expressed by a gene on chromosome 9.

The video will load shortly.
Time-lapse movie of dendritic cells (red) entering lymphatic vessels (green), in a mouse ear explants. Credit: Michele Weber and Michael Sixt

The scientists showed that CCL21 is produced by the in the lymphatic vessel and the chemokine then spreads out into the tissues to form a steeply decaying concentration gradient. They were able to map out the gradients and compare these with the migration routes actually taken by the , and proved that from a distance of about 90 micrometers the cells followed the concentration gradient and located the lymphatic vessel by moving towards the greater concentration of CCL21.

The researchers were also able to demonstrate that the concentration gradients were bound to the tissues (immobilized) and not soluble. They did this by swamping the gradients by adding extra chemokine and by delocalizing the chemokine, which is immobilized to heparan sulfates. The process of migration following immobilized concentration gradients is known as haptotaxis.

Their paper was published in the journal Science.

Explore further: Study shows how immune cells navigate through the skin by sensing graded patterns of immobilized directional cues

More information: Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients, Science, 18 January 2013: Vol. 339 no. 6117 pp. 328-332
DOI: 10.1126/science.1228456

Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.

Study shows how immune cells navigate through the skin by sensing graded patterns of immobilized directional cues

Related Stories

Study shows how immune cells navigate through the skin by sensing graded patterns of immobilized directional cues

January 17, 2013
A research paper by the group of Michael Sixt, Assistant Professor at the Institute of Science and Technology Austria (IST Austria), published today in Science, provides new insights into how immune cells find their way through ...

Hide and seek signals

December 15, 2011
The white blood cells that fight disease and help our bodies heal are directed to sites of infection or injury by 'exit signs' – chemical signals that tell them where to pass through the blood vessel walls and into the ...

How tumor cells create their own pathways

July 10, 2012
Metastasis occurs when tumor cells "migrate" to other organs through the bloodstream. Scientists have now discovered the trick tumor cells use to invade tissue from the blood vessels: They produce signaling proteins to make ...

Preschool within lymphatic vessels

August 9, 2012
Not only infants crawl. ETH researchers have shown that so-called dendritic cells, important cells of the immune system, use a similar mode of movement more often than previously assumed. The scientists used intravital microscopy ...

Recommended for you

Immune system can be modulated by targeted manipulation of cell metabolism

August 21, 2017
In its attempt to fight a serious bacterial infection, caused by listeria, for example, the immune system can become so over-activated that the resulting inflammatory response and its consequences can quickly lead to death. ...

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.