Induction of adult cortical neurogenesis by an antidepressant

January 4, 2013, National Institute for Physiological Sciences

The production of new neurons in the adult normal cortex in response to the antidepressant, fluoxetine, is reported in a study published online this week in Neuropsychopharmacology.

The research team, which is based at the Institute for Comprehensive Medical Science, Fujita Health University, Aichi, has previously demonstrated that exist at the surface of the adult cortex, and, moreover, that ischemia enhances the generation of new from these neural progenitor cells. These cells were accordingly named "Layer 1 Inhibitory Neuron Progenitor cells" (L1-INP). However, until now it was not known whether L1-INP-related neurogenesis could be induced in the normal adult cortex.

Tsuyoshi Miyakawa, Koji Ohira, and their colleagues employed fluoxetine, a , and one of the most widely used antidepressants, to stimulate the production of new neurons from L1-INP cells. A large percentage of these newly generated neurons were inhibitory GABAergic interneurons, and their generation coincided with a reduction in apoptotic cell death following ischemia. This finding highlights the potential neuroprotective response induced by this antidepressant drug. It also lends further support to the postulation that induction of adult neurogenesis in cortex is a relevant prevention/treatment option for and psychiatric disorders.

Explore further: Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

Related Stories

Confirmation of repeated patterns of neurons indicates stereotypical organization throughout brain's cerebral cortex

May 11, 2012
Neurons are arranged in periodic patterns that repeat over large distances in two areas of the cerebral cortex, suggesting that the entire cerebral cortex has a stereotyped organization, reports a team of researchers led ...

Disinhibition plus instruction improve brain plasticity

April 12, 2011
(PhysOrg.com) -- The healthy brain has balance of excitatory and inhibitory signals that stimulate activity but also keep it under control. Some brain diseases, like autism and Down's syndrome, have too much inhibition, which ...

Researchers devise a method for reprogramming cells in urine into neural progenitor cells

December 10, 2012
(Medical Xpress)—Researchers in China have developed a technique for reprogramming cells found in urine into neural progenitor cells that are capable of growing into neurons. In their paper published in Nature Methods, ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.