Researchers discover novel role of the NEDD9 gene in early stages of breast cancer

January 14, 2013

Breast cancer is the second leading cause of cancer deaths among women in the United States. Many of these deaths occur when there is an initial diagnosis of invasive or metastatic disease. A protein called NEDD9—which regulates cell migration, division and survival—has been linked to tumor invasion and metastasis in a variety of cancers. Researchers at Fox Chase Cancer Center have now shown that NEDD9 plays a surprising role in the early stages of breast tumor development by controlling the growth of progenitor cells that give rise to tumors. The findings, published in the journal Oncogene on January 14, 2013, could lead to personalized treatment strategies for women with breast cancer based on the levels of NEDD9 in their tumors.

"For several years, NEDD9 has been linked to and invasion at later stages. This is the first study that really shows how important NEDD9 can be for the initiation of tumors in breast cancer, and to link this initiation process to progenitor cells," says lead study author Joy Little, PhD, a postdoctoral fellow at Fox Chase who works in the laboratory of senior study investigator Erica A. Golemis, PhD, Deputy Chief Scientific Officer and Vice President at Fox Chase.

In the study, Little, Golemis and their collaborators mated mice without the NEDD9 gene to mice engineered to develop HER2+ mammary tumors and unexpectedly found that these mice were largely resistant to tumor formation. Only 18% of the mice developed , compared with 80% of mice that had a functional NEDD9 gene. In contrast to previous research findings showing that an increase in NEDD9 levels promotes , the researchers found that loss of NEDD9 had little effect on tumor metastasis, indicating that it is not required for this process in this specific context. Once formed, the tumors in mice lacking NEDD9 grew rapidly, suggesting that it either plays a less important role at later stages of tumor growth or tumors undergo compensatory changes that allow them to bypass the need for NEDD9.

Importantly, mice lacking NEDD9 showed a significant reduction in progenitor cell populations in the mammary gland compared with mice that had a functional NEDD9 gene. Progenitor cells from NEDD9-null mice were less likely to form three-dimensional mammospheres in culture, but proliferated at the same rate as cells from control mice. The loss of Nedd9 also made progenitor cells more sensitive to lower doses of two tumor-inhibiting drugs—a Food and Drug Administration-approved Src inhibitor called dasatinib, and a focal adhesion kinase inhibitor from a class of drugs currently being tested in clinical trials for the treatment of cancer. These findings suggest that these types of drugs would more effectively control breast cancer tumors with low levels of NEDD9.

"Eventually, with a biopsy, you may be able to get a read-out of all the mutations that a tumor has, and each one would potentially dictate whether or not a certain line of therapy would work for a specific tumor," Little says. "If NEDD9 levels are higher in a particular tumor, we could potentially determine whether or not it would be more sensitive to specific inhibitors."

To follow up on this work, the researchers plan to determine the mechanisms by which NEDD9 controls , and examine whether NEDD9 plays a similar role in early stages of other types of cancer.

Explore further: Researchers develop novel 3-D culture system for inflammatory breast cancer

Related Stories

Researchers develop novel 3-D culture system for inflammatory breast cancer

December 9, 2012
Inflammatory breast cancer (IBC) is a very rare and aggressive disease that progresses rapidly and is associated with a very low survival rate. To understand how this type of cancer spreads, it's crucial to characterize the ...

Endotrophin links obesity to breast cancer progression

October 8, 2012
Fat cells (adipocytes) surround breast tumors and contribute to tumor growth by expressing factors that aid oncogenesis. Col6 is a protein that is highly expressed in adipocytes and its expression is further increased in ...

Immune cells link pregnancy and tumor spread

June 6, 2011
Individuals with cancer often do not die as a result of their initial tumor but as a result of tumors at distant sites that are derived from the initial tumor. Pregnancy is a condition that seems to be permissive for tumor ...

Recommended for you

Researchers unravel novel mechanism by which tumors grow resistant to radiotherapy

November 23, 2017
A Ludwig Cancer Research study has uncovered a key mechanism by which tumors develop resistance to radiation therapy and shown how such resistance might be overcome with drugs that are currently under development. The discovery ...

African Americans face highest risk for multiple myeloma yet underrepresented in research

November 23, 2017
Though African-American men are three times more likely to be diagnosed with multiple myeloma, a type of blood cancer, most scientific research on the disease has been based on people of European descent, according to a study ...

Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017
Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers ...

One-size treatment for blood cancer probably doesn't fit all, researchers say

November 22, 2017
Though African-American men are three times more likely to be diagnosed with a blood cancer called multiple myeloma, most scientific research on the disease has been based on people of European descent, according to a study ...

One in four U.S. seniors with cancer has had it before

November 22, 2017
(HealthDay)—For a quarter of American seniors, a cancer diagnosis signals the return of an old foe, new research shows.

Combination immunotherapy targets cancer resistance

November 22, 2017
Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.