Sensory hair cells regenerated, hearing restored in mammal ear

Regeneration of sound sensing cells recovers hearing in mice with noise-induced deafness
These are normal inner and outer hair cells. Credit: Neuron, Mizutari et al.

Hearing loss is a significant public health problem affecting close to 50 million people in the United States alone. Sensorineural hearing loss is the most common form and is caused by the loss of sensory hair cells in the cochlea. Hair cell loss results from a variety of factors including noise exposure, aging, toxins, infections, and certain antibiotics and anti-cancer drugs. Although hearing aids and cochlear implants can ameliorate the symptoms somewhat, there are no known treatments to restore hearing, because auditory hair cells in mammals, unlike those in birds or fish, do not regenerate once lost. Auditory hair cell replacement holds great promise as a treatment that could restore hearing after loss of hair cells.

In the Jan. 10 issue of Neuron, Massachusetts Eye and Ear and Harvard Medical School researchers demonstrate for the first time that hair cells can be regenerated in an adult mammalian ear by using a drug to stimulate resident cells to become new hair cells, resulting in partial recovery of hearing in mouse ears damaged by noise trauma. This finding holds great potential for future that may someday reverse deafness in humans.

"Hair cells are the primary for sound and are responsible for the sense of hearing," explains senior author, Dr. Albert Edge, of Harvard Medical School and Mass. Eye and Ear. "We show that hair cells can be generated in a damaged cochlea and that hair cell replacement leads to an improvement in hearing."

In the experiment, the researchers applied a drug to the cochlea of deaf mice. The drug had been selected for its ability to generate hair cells when added to stem cells isolated from the ear. It acted by inhibiting an enzyme called gamma-secretase that activates a number of . The drug applied to the cochlea inhibited a signal generated by a protein called Notch on the surface of cells that surround hair cells. These supporting cells turned into new hair cells upon treatment with the drug. Replacing hair cells improved hearing in the mice, and the improved hearing could be traced to the areas in which supporting cells had become new hair cells. "The missing hair cells had been replaced by new hair cells after the drug treatment, and analysis of their location allowed us to correlate the improvement in hearing to the areas where the hair cells were replaced," Dr. Edge said.

Regeneration of sound sensing cells recovers hearing in mice with noise-induced deafness
This image shows cochlea after damage only and after damage and replacement of hair cells. Credit: Neuron, Mizutari et al.

This is the first demonstration of hair cell regeneration in an adult mammal. "We're excited about these results because they are a step forward in the biology of regeneration and prove that mammalian hair cells have the capacity to regenerate," Dr. Edge said. "With more research, we think that regeneration of opens the door to potential therapeutic applications in deafness."

More information: "Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma." Neuron, 2013. dx.doi.org/10.1016/j.neuron.2012.10.032

Journal information: Neuron
Citation: Sensory hair cells regenerated, hearing restored in mammal ear (2013, January 9) retrieved 18 April 2024 from https://medicalxpress.com/news/2013-01-sensory-hair-cells-regenerated-mammal.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Study shows isolation of stem cells may lead to a treatment for hearing loss

4 shares

Feedback to editors