Researchers uncover previously unknown mechanism of memory formation

January 30, 2013, Scripps Research Institute

(Medical Xpress)—It takes a lot to make a memory. New proteins have to be synthesized, neuron structures altered. While some of these memory-building mechanisms are known, many are not. Some recent studies have indicated that a unique group of molecules called microRNAs, known to control production of proteins in cells, may play a far more important role in memory formation than previously thought.

Now, a new study by scientists on the Florida campus of The Scripps Research Institute has for the first time confirmed a critical role for microRNAs in the development of memory in the part of the brain called the amygdala, which is involved in . The new study found that a specific —miR-182—was deeply involved in memory formation within this .

"No one had looked at the role of microRNAs in amygdala memory," said Courtney Miller, a TSRI assistant professor who led the study. "And it looks as though miR-182 may be promoting local protein synthesis, helping to support the synapse-specificity of memories."

In the new study, published in the Journal of Neuroscience, the scientists measured the levels of all known microRNAs following an of learning. A , which enables rapid genetic testing on a large scale, showed that more than half of all known microRNAs are expressed in the . Seven of those microRNAs increased and 32 decreased when learning occurred.

The study found that, of the microRNAs expressed in the brain, miR-182 had one of the lowest levels and these decreased further with learning. Despite these very low levels, its overexpression prevented the formation of memory and led to a decrease in proteins that regulate neuronal plasticity (neurons' ability to adapt) through changes in structure.

These findings suggest that learning-induced suppression of miR-182 is a main supporting factor in the formation of long-term memory in the amagdala, as well as an underappreciated mechanism for regulating during memory consolidation, Miller said.

Further analysis identified miR-182 as a repressor of proteins that control actin—a major component of the cytoskeleton, the scaffolding that holds cells together.

"We know that requires changes in dendritic spines on the neurons through regulation of the actin cytoskeleton," Miller said. "When miR-182 is suppressed through learning it halts, at least in part, repression of actin-regulating proteins, so there's a good chance that miR-182 exerts important control over the actin cytoskeleton."

Miller is now interested in whether or not high levels of miR-182 accumulate in the aging brain, something that would help to explain a tendency toward memory loss in the elderly. She also notes that other research has shown that animal models lacking miR-182 had no significant physical or cellular abnormalities, suggesting that miR-182 could be a viable target for drug discovery.

Explore further: Making memories: How one protein does it

More information: "MicroRNA-182 Regulates Amygdala-Dependent Memory Formation," January 23, 2013, The Journal of Neuroscience 33(4):1734-1740; doi:10.1523/JNEUROSCI.2873-12.2013

Related Stories

Making memories: How one protein does it

March 5, 2012
Studying tiny bits of genetic material that control protein formation in the brain, Johns Hopkins scientists say they have new clues to how memories are made and how drugs might someday be used to stop disruptions in the ...

Regulating the formation of fear extinction memory

August 15, 2011
(Medical Xpress) -- Neuroscientists at UQ's Queensland Brain Institute have discovered a previously unrecognized layer of gene regulation associated with fear extinction.

Potential new eye tumor treatment discovered

August 5, 2011
New research from a team including several Carnegie scientists demonstrates that a specific small segment of RNA could play a key role in the growth of a type of malignant childhood eye tumor called retinoblastoma. The tumor ...

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) Jan 30, 2013
Isn't it the microRNA / messenger RNA balance that regulates protein synthesis during memory consolidation?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.