How to mend a broken heart: Advances in parthenogenic stem cells

February 22, 2013

Parthenogenesis is a form of asexual reproduction during which unfertilized eggs begin to develop as if they had been fertilized. It occurs naturally in many plants and a few invertebrate (some bees, scorpions, parasitic wasps) and vertebrate animals (some fish, reptiles, and amphibians), but does not occur naturally in mammals.

In 2007, researchers were able to chemically induce human to undergo parthenogenesis. The resulting parthenogenote has properties similar to an embryo, but cannot develop further.

In this issue of the , Wolfram Zimmerman and colleagues at Georg-August-Universität Göttingen in Göttingen, Germany, demonstrated that cells from the parthenogenote function as and maintain the capacity to develop into different types of tissue.

Further, they used parthenogenic stem cells to make cardiomyocytes and engineered heart muscle (myocardium) that exhibited the structural and functional properties of normal myocardium. The engineered myocardium could then be used to engraft the mice that had contributed the eggs for parthenogenesis.

These studies demonstrate that parthenogenic stem cells can be used for tissue engineering.

In a companion commentary, Michael Schneider of the Imperial College of London discusses how these findings could impact the development of cell replacement therapies.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

More information: Parthenogenetic stem cells for tissue engineered heart repair, Journal of Clinical Investigation, 2013. doi:10.1172/JCI66854
Virgin birth: engineered heart muscle from parthenogenic stem cells, Journal of Clinical Investigation, 2013. doi:10.1172/JCI67961

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Extracting stem cells from fat for tissue regeneration

May 3, 2011
Stem cells extracted from body fat may pave the way for the development of new regenerative therapies including soft tissue reconstruction following tumor removal or breast mastectomy surgery, the development of tissue-engineered ...

Researchers grow pituitary glands from embryonic stem cells

November 10, 2011
(Medical Xpress) -- A new study published in Nature reports that scientists have been able to grow working pituitary glands from embryonic stem cells from mice. When these were transplanted into mice with defects in the pituitary ...

Recommended for you

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

Antibiotic-releasing polymer may help eradicate joint implant infection

July 18, 2017
A team of Massachusetts General Hospital (MGH) investigators has developed an antibiotic-releasing polymer that may greatly simplify the treatment of prosthetic joint infection. In their recent report published in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.