Capturing cancer cells

February 26, 2013 by Harry Dayantis
Capturing cancer cells
Microscope image showing magnetic beads attached to cancer cells after isolation process. Credit: OU/Mark Howarth

(Medical Xpress)—When dealing with cancer, time is critical. Identifying cancer before it spreads can often be the difference between life and death, so early diagnosis is key.

Cancers begin in one part of the body and often spread through the bloodstream into other organs. This process is known as '', and causes secondary tumours, 'metastases', to grow at other locations in the body. These cells which are released from the primary tumour into the bloodstream are called 'circulating cells' (CTCs).

CTCs can be circulating through the for years before any form. If small numbers of CTCs can be detected in blood samples, cancers can be diagnosed before they spread. This is no easy task; blood samples might only contain a single CTC among millions of , and it can be difficult to distinguish between CTCs and normal cells.

'A common signature that a cell in the blood is cancerous is that the CTC has a protein called "EpCAM" on its surface,' says Dr Mark Howarth, a at the University of Oxford. Dr Howarth develops innovative biological and chemical techniques to image and diagnose cancer, and his group has recently been investigating the use of magnetic beads in .

'To catch CTCs, the most common way is to use magnetic attraction,' explains Dr Howarth. 'We use small magnetic beads coated with . Antibodies are proteins, normally produced by the immune system, which bind to specific targets. By using antibodies which bind only to EpCAM, we ensure that the beads only stick to CTCs. When a magnet is applied, the CTCs move to the magnet and the normal blood cells are washed away.

'We can then study the captured cells in the microscope to understand if the cell really is cancerous. By sequencing the cell's DNA we can discover other features, such as whether the cancer might be vulnerable to particular drugs. For this reason, even if a person has already been diagnosed with cancer, studying their CTCs could be an important way to make sure that they get the best treatment.'

This technique has great diagnostic potential, as it only requires a standard blood sample from the patient. Yet current methods fail to catch CTCs whose surface contains low levels of markers such as EpCAM. Jayati Jain and Gianluca Veggiani in Dr Howarth's group investigated ways of ensuring that CTCs with fewer surface markers were still picked up by the magnetic beads. This was recently published in the journal Cancer Research.

'We showed that it makes a huge difference to use antibodies with the best binding affinity for their target,' says Dr Howarth. 'For imaging cancer cells, moderate binding affinity is okay, but for isolating cancer cells, there is a force from the magnet pulling the antibody off its target and so only the best antibodies survive.'

The 'binding affinity' between an antibody and its target determines how strongly they are held together. Antibodies with higher binding affinities provide stronger links between CTCs and magnetic beads, so fewer beads will be torn from CTCs when magnetic fields are applied. As a result, more CTCs end up in the final isolated sample.

Another problem with isolating CTCs is that the surface markers which the antibodies must bind to are not simply static.

'Surface markers like EpCAM in the membrane of the cell are moving in a "sea" of lipids and cholesterol,' explains Dr Howarth. 'Cholesterol plays an important role in the physical properties of the cell membrane, affecting its fluidity, elasticity and integrity. We found that the cell's cholesterol level was crucial to how sensitively the cell could be isolated by the .

'Feeding cells extra cholesterol for an hour meant that even cells with low EpCAM levels were caught. It's worth bearing in mind that all of this is done to blood samples after they have been taken from the patient – we're not talking about pumping people full of cholesterol!'

If enhanced CTC isolation techniques could be rolled out nationwide, cancers could potentially be identified years earlier than they are currently. A recent survey found that around a quarter of cancers in the UK are only diagnosed when the symptoms are so severe that patients are admitted to A&E.

'Using the information we gained about cell isolation, we could capture cancer cells expressing lower levels of distinguishing marker than before,' according to Dr Howarth. 'As the next step we are going on to explore, through collaboration with the Oxford Cancer Research Centre, how our enhanced technique will affect the ability to find CTCs in breast cancer patients and understand the changes happening during the course of the disease. In the long term, we hope that this approach will help searching for CTCs to become a standard tool in looking for early signs of cancer in the most susceptible populations.

'It's worth emphasizing that our modification of this technology has a long way to go before we see it in clinical diagnosis. Clinics in the US already use magnetic isolation techniques, but only to detect cancer recurrence rather than for the initial diagnosis. We need to test our enhanced techniques on the of real cancer patients to assess their clinical value.

'We must also improve our understanding of CTCs, so that clinicians can reliably identify them under a microscope. With typical current approaches, a few percent of samples give a 'false positive', because some normal look like CTCs. In several years, if we could address these issues, CTC isolation could be a powerful and cost-effective tool for primary diagnosis of .'  

Explore further: Hunting for the last remaining tumour cell

More information: cancerres.aacrjournals.org/con … 008-5472.CAN-12-2956

Related Stories

Hunting for the last remaining tumour cell

October 29, 2012
The 7.5 millilitres of blood contained in a standard sample tube is not nearly enough to detect circulating tumour cells (CTCs) in the blood of patients with metastatic breast cancer, prostate cancer, or colorectal cancer ...

Researchers identify potential treatment target for metastatic pancreatic cancer using CTC chip technology

July 30, 2012
(Medical Xpress) -- Researchers with the Stand Up To Cancer CTC Chip Dream Team have identified a potential treatment target in metastatic pancreatic cancer through a detailed analysis of genes expressed in circulating tumor ...

Blood test could lead to improved diagnosis and treatment of breast cancer

June 5, 2012
Scientists have discovered that a simple blood test could lead to better diagnosis and treatment for early-stage breast cancer patients, according to an Article published Online First in The Lancet Oncology.

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

humy
not rated yet Feb 26, 2013
It says "'To catch CTCs, the most common way is to use magnetic attraction,' explains Dr Howarth. 'We use small magnetic beads coated with antibodies. Antibodies are proteins, normally produced by the immune system, which bind to specific targets. By using antibodies which bind only to EpCAM, we ensure that the beads only stick to CTCs. When a magnet is applied, the CTCs move to the magnet and the normal blood cells are washed away."

In other words, they have a way of filtering out CTCs from blood and in less time it normally takes for CTCs in the blood to form metastases.
SO, instead of JUST using it for diagnosis by only using on blood samples, why not do the obvious thing and use this to make a machine that filters out all the CTCs in ALL the blood of a person that has cancer thus preventing the cancer from spreading?
Wouldn't that save lives?
What am I missing here?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.