Preventing chronic pain with stress management

February 25, 2013

For chronic pain sufferers, such as people who develop back pain after a car accident, avoiding the harmful effects of stress may be key to managing their condition. This is particularly important for people with a smaller-than-average hippocampus, as these individuals seem to be particularly vulnerable to stress.

These are the findings of a study by Dr. Pierre Rainville, PhD in Neuropsychology, Researcher at the Research Centre of the Institut universitaire de gériatrie de Montréal (IUGM) and Professor in the Faculty of Dentistry at Université de Montréal, along with Étienne Vachon-Presseau, a PhD student in Neuropsychology. The study appeared in Brain.

"Cortisol, a hormone produced by the , is sometimes called the 'stress hormone' as it is activated in reaction to stress. Our study shows that a small hippocampal volume is associated with higher , which lead to increased vulnerability to pain and could increase the risk of developing pain chronicity," explained Étienne Vachon-Presseau.

As Dr. Pierre Rainville described, "Our research sheds more light on the of this important relationship between stress and pain. Whether the result of an accident, illness or surgery, pain is often associated with high levels of stress Our findings are useful in that they open up avenues for people who suffer from pain to find treatments that may decrease its impact and perhaps even prevent chronicity. To complement their medical treatment, pain sufferers can also work on their stress management and fear of pain by getting help from a psychologist and trying relaxation or ."

Research summary

This study included 16 patients with chronic back pain and a control group of 18 healthy subjects. The goal was to analyze the relationships between four factors: 1) cortisol levels, which were determined with ; 2) the assessment of clinical pain reported by patients prior to their brain scan (self-perception of pain); 3) hippocampal volumes measured with anatomical magnetic resonance imaging (MRI); and 4) brain activations assessed with functional MRI (fMRI) following thermal pain stimulations. The results showed that patients with chronic pain generally have higher cortisol levels than healthy individuals.

Data analysis revealed that patients with a smaller hippocampus have higher cortisol levels and stronger responses to acute pain in a brain region involved in anticipatory anxiety in relation to pain. The response of the brain to the painful procedure during the scan partly reflected the intensity of the patient's current clinical pain condition. These findings support the chronic pain vulnerability model in which people with a smaller hippocampus develop a stronger stress response, which in turn increases their pain and perhaps their risk of suffering from chronic pain. This study also supports stress management interventions as a treatment option for .

Explore further: Painful periods increase sensitivity to pain throughout the month

More information: Étienne Vachon-Presseau, Mathieu Roy, Marc-Olivier Martel, Etienne Caron, Marie-France Marin, Jeni Chen, Geneviève Albouy, Isabelle Plante, Michael J. Sullivan, Sonia J. Lupien et Pierre Rainville. "The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans", February 18, 2013.

Related Stories

Painful periods increase sensitivity to pain throughout the month

May 6, 2011
(Medical Xpress) -- Women with painful periods show increased sensitivity to pain throughout their cycles, even when there is no background period pain.

Yoga boosts stress-busting hormone, reduces pain

July 27, 2011
A new study by York University researchers finds that practicing yoga reduces the physical and psychological symptoms of chronic pain in women with fibromyalgia.

Negative emotions influence brain activity during anticipation and experience of pain

September 19, 2011
Neuroticism — the tendency to experience negative emotions — significantly affects brain processing during pain, as well as during the anticipation of pain, according to a new study in Gastroenterology, the official ...

Viewing terrorist attacks on TV increases pain intensity: research

July 2, 2012
"Exposure to media coverage of terrorist missile attacks increases pain levels in people already suffering from chronic pain," according to a new study by Ben-Gurion University of the Negev (BGU) researchers.

New imaging technique captures brain activity in patients with chronic low back pain

July 27, 2011
Research from Brigham and Women's Hospital (BWH) uses a new imaging technique, arterial spin labeling, to show the areas of the brain that are activated when patients with low back pain have a worsening of their usual, chronic ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.