For some, deep brain stimulation brings lasting improvement in neuropathic pain

February 13, 2013, Wolters Kluwer Health

For many patients with difficult-to-treat neuropathic pain, deep brain stimulation (DBS) can lead to long-term improvement in pain scores and other outcomes, according to a study in the February issue of Neurosurgery.

About two-thirds of eligible patients who undergo DBS achieve significant and lasting benefits in terms of , quality of life, and overall health, according to the report by Sandra G.J. Boccard, PhD, and colleagues of University of Oxford, led by Tipu Aziz FMedSci and Alex Green, MD. Some outcomes show continued improvement after the first year, according to the new report, which is one of the largest studies of DBS for neuropathic pain performed to date.

Most Patients Benefit from DBS for Neuropathic Pain

The authors reviewed their 12-year experience with DBS for neuropathic pain. Neuropathic pain is a common and difficult-to-treat type of pain caused by , seen in patients with trauma, diabetes, and other conditions. after amputation is an example of neuropathic pain.

In DBS, a small electrode is surgically placed in a precise location in the brain. A mild electrical current is delivered to stimulate that area of the brain, with the goal of interrupting abnormal activity. Deep has become a standard and effective treatment for movement disorders such as Parkinson's disease. Although DBS has also been used to treat various types of , its role in patients with neuropathic pain remains unclear.

Between 1999 and 2011, that authors' program evaluated 197 patients with for eligibility for DBS. Of these, 85 patients proceeded to DBS treatment. The remaining patients did not receive DBS—most commonly because they were unable to secure funding from the U.K. National Health Service or decided not to undergo electrode placement surgery.

The patients who underwent DBS were 60 men and 25 women, average age 52 years. Stroke was the most common cause of neuropathic pain, followed by head and face pain, spinal disease, amputation, and injury to nerves from the upper spinal cord (brachial plexus).

In 74 patients, a trial of DBS produced sufficient pain relief to proceed with implantation of an electrical pulse generator. Of 59 patients with sufficient follow-up data, 39 had significant improvement in their overall health status up to four years later. Thus, 66 percent of patients "gained benefit and efficacy" by undergoing DBS.

Benefits Vary by Cause; Some Outcomes Improve with Time

The benefits of DBS varied for patients with different causes of neuropathic pain. Treatment was beneficial for 89 percent for patients with amputation and 70 percent of those with stroke, compared to 50 percent of those with brachial plexus injury.

On average, scores on a 10-point pain scale (with 10 indicating the most severe pain) decreased from about 8 to 4 within the first three months, remaining about the same with longer follow-up. Continued follow-up in a small number of patients suggested further improvement in other outcomes, including quality-of-life scores.

has long been regarded as potentially useful for patients with severe neuropathic pain that is not relieved by other treatments. However, because of the difficulties of performing studies of this highly specialized treatment, there has been relatively little research to confirm its benefits; only about 1,500 patients have been treated worldwide. The new study—accounting for about five percent of all reported patients—used up-to-date DBS technologies, imaging, and surgical techniques.

Dr. Boccard and coauthors acknowledge some important limitations of their study—especially the lack of complete patient follow-up. However, they believe their experience is sufficiently encouraging to warrant additional studies, especially with continued advances in stimulation approaches and technology. The researchers conclude, "Clinical trials retaining patients in long-term follow-up are desirable to confirm findings from prospectively assessed case series."

Explore further: How does exercise affect nerve pain?

Related Stories

How does exercise affect nerve pain?

June 1, 2012
Exercise helps to alleviate pain related to nerve damage (neuropathic pain) by reducing levels of certain inflammation-promoting factors, suggests an experimental study in the June issue of Anesthesia & Analgesia, official ...

Less-invasive method of brain stimulation helps patients with Parkinson's disease

October 16, 2012
Electrical stimulation using extradural electrodes—placed underneath the skull but not implanted in the brain—is a safe approach with meaningful benefits for patients with Parkinson's disease, reports the October issue ...

Next-generation brain stimulation may improve treatment of Parkinson's disease

October 19, 2011
Parkinson's disease (PD) is a devastating and incurable disease that causes abnormal poverty of movement, involuntary tremor, and lack of coordination. A technique called deep brain stimulation (DBS) is sometimes used to ...

Study creates tool to track real-time chemical changes in brain

July 16, 2012
Mayo Clinic researchers have found a novel way to monitor real-time chemical changes in the brains of patients undergoing deep brain stimulation (DBS). The groundbreaking insight will help physicians more effectively use ...

New insight into pain mechanisms

April 25, 2012
(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.