Discovery in HIV may solve efficiency problems for gene therapy

February 14, 2013, Case Western Reserve University

A research team from Case Western Reserve University School of Medicine has discovered an approach that could make gene therapy dramatically more effective for patients.

Led by professor Eric Arts, PhD, the scientists discovered that the process of is missing essential elements thereby reducing the effectiveness of this treatment. Re-introducing this element into their model system suggests that improvements for areon the horizon.

The findings are detailed in the article, "A new packaging element in and the interplay with ribosomal frameshifting," published today in the journal Cell Host & Microbe.

Advances in gene therapy offer promising treatment for genetic abnormalities, tumors and resistance to toxic chemotherapies. Such therapy has been used to treat cystic fibrosis, hemophilia, muscular dystrophy and sickle cell anemia.

But a failure to distribute enough modified genetic information to the patient's body has prohibited gene therapy from being more widely used.

Gene therapy relies mainly on viruses—which transport genomes inside the cells they infect—to deliver genetic material into a patient's cells. The virus-driven delivery tools are called "viral vectors."

Unfortunately, the success rate of viral vectors is uneven. For instance, adenoviruses, a cause for the common cold, and lentiviruses, such as HIV-1, are routinely converted into viral vectors. But adenovirus vectors don't last long, so therapy must be frequently re-administered. And lentiviral vectors, while stable, fail to deliver genetic material to enough defective human cells.

Arts, a professor of medicine in the Division of Infectious Diseases and HIV Medicine, learned that lentiviral carriers lack sufficient genetic material necessary for treatment.

HIV-1, when converted from virus to lentiviral vector, loses a specific RNA element required to pack its "container" with its own genetic material to be effective. After identifying the problem, researchers introduced the element into a lentiviral vector, successfully and significantly improving the quality and quantity of the gene therapy.

Arts and colleagues named the genetic element, Packaging Enhancer element (or GRPE). During virus production, GRPE coordinates the production and filling of the container with the genetic material of HIV-1, or the desired human gene.

Delivery and success of gene therapy for human cells has the potential of increasing five to ten times with the introduction of the GRPE into the lentiviral vector.

"Using lentivirus for gene transfer appears to be a safe option," said Stanton L. Gerson, MD, director of the Case Comprehensive Cancer Center and the Asa and Patricia Shiverick- Jane Shiverick (Tripp) Professor of Hematological Oncology at Case Western Reserve School of Medicine and director of the Seidman Cancer Center at University Hospitals Case Medical Center, who is not involved in the study. "This discovery could greatly advance the recent successes ongoing in cancer and childhood congenital diseases. Improvements in the technology of gene delivery identified by Arts and his colleagues could lead to many more effective studies that help patients with many different diseases, including cancer. Its impact could be felt in a few short years."

Ultimately, introducing GRPE elements into viral vectors could enhance the ease and effectiveness of gene therapy, which typically uses transplanted human stem cells. Enhanced gene therapy and other improvements in targeted cell delivery might eliminate the need for stem cells and allow cells to be administered directly into patients.

Explore further: Mouse model could help identify viral vectors that may cause tumors

Related Stories

Mouse model could help identify viral vectors that may cause tumors

October 26, 2012
Investigators at Nationwide Children's Hospital have identified a mouse model that could help evaluate the risk that viral vectors used in gene therapy might promote tumor formation as a side-effect. The study appears in ...

The promise of stem cell-based gene therapy

June 27, 2011
Sophisticated genetic tools and techniques for achieving targeted gene delivery and high gene expression levels in bone marrow will drive the successful application of gene therapy to treat a broad range of diseases. Examples ...

Gene therapy success depends on ability to advance viral delivery vectors to commercialization

May 18, 2011
Many gene therapy strategies designed to deliver a normal copy of a gene to cells carrying a disease-causing genetic mutation rely on a modified virus to transfer the gene product into affected tissues. One technology platform ...

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.