Discovery spurred by unique twist of fate

February 21, 2013 by Shawn Hutchins
Discovery spurred by unique twist of fate
Varying images of calcific nodules stained in dark red with surrounding valvular interstitial cells in gray. Images B and D received the highest treatment of gentamicin.

(Medical Xpress)—As people age, or as a result of poor nutrition, heart valves can become damaged by the accumulation of calcium deposits within the tissue. This calcification causes a thickening and hardening of the tissue to the point that it limits normal blood flow.

Bioengineering researchers in Rice Associate Professor Jane Grande-Allen's laboratory analyze the biomechanics of heart-valve tissue and the underlying cellular and of valve disease. One ongoing investigation pursued by her group looks into the roles cellular and matrix components play in normal valve biology and the that can cause the formation of calcified nodules in aortic valve leaflets.

"Very little is known about the intracellular dynamics among genes, proteins and the that guide either normal processes or give rise to abnormalities," Grande-Allen said. "Accumulative efforts in our lab involve investigations into valve- and disease from a more mechanical perspective. Specifically, we look for cues as to how alterations to cells and cellular environments are driven by of the over many years."

In a unique twist of fate, Grande-Allen, graduate student Dena Wiltz and undergraduate student Aditya Kumar found that gentamicin, an aminoglycosidic antibiotic used to treat many types of bacterial infections, significantly reduced the number and size of calcific nodules formed by valvular interstitial cells.

The research, which was detailed in the journal Cardiovascular Engineering and Technology, was initially spurred by the lab's examination of various antibiotics for the occasional prevention of bacterial infections in cell cultures.

"Contamination of is a consistent issue for researchers, said Wiltz, a sixth-year graduate student in the Grande-Allen lab at Rice's BioScience Research Collaborative. Wiltz's research in valve disease is supported by a grant from Baylor College of Medicine.

"Impurities not only adversely affect results, but vast amounts of time and money can be spent managing bacterial contaminates," Wiltz said. "Gentamicin is widely used for the in vitro prevention of cell- and tissue-culture contamination, but it has been reported to affect calcium levels in various cell types. So we decided to add it to our cultures—not to prevent contamination so much as to see if it regulated calcium mineralization by valve cells."

Their investigations paid off. "Not only did we find that dose-dependent increases of gentamicin caused alterations to cellular mineralization, but the findings, along with a literary investigation, spurred insight into the roles cellular components, such as lipids and mitochondria, might play in the development of pathological calcification," Kumar said. He is a senior and co-author on the research paper and has been a member of the Grande-Allen group since the summer of his freshman year.

Aortic valve tissue is made of trilayered connective tissues, and Grande-Allen and her students apply engineering analysis to decode how individual parts of this complex cooperate, respond to cellular signals and are influenced by overall valvular function, growth and the evolution of abnormalities.

"Through a bottom-up approach, we are looking at how valvular interstitial cells—the primary cells within these tissue layers—interact both biologically and mechanically with their surrounding environments," Grande-Allen said. "Although gentamicin has limited clinical use, due to its toxic side effects, our results might prove to be useful in connecting these processes and ultimately in the development of promising pharmaceuticals that curb the progression of heart-valve disease."

Explore further: Magnetically levitated tissues could speed toxicity tests

More information: link.springer.com/article/10.1 … %2Fs13239-012-0114-6

Related Stories

Magnetically levitated tissues could speed toxicity tests

January 24, 2013
In a development that could lead to faster and more effective toxicity tests for airborne chemicals, scientists from Rice University and the Rice spinoff company Nano3D Biosciences have used magnetic levitation to grow some ...

Approval expanded for sapien artificial heart valve

October 22, 2012
(HealthDay)—U.S. Food and Drug Administration approval for the Sapien Transcatheter Heart Valve has been expanded to include additional people with aortic valve stenosis, the medical term for a narrowing of the aortic valve ...

New scanning strategy could help develop heart disease treatments

December 12, 2011
Patients with life-threatening heart valve disease could be helped with alternative scanning techniques that provide greater insight into the condition.

Genetic variation doubles risk of aortic valve calcification

February 6, 2013
Researchers have found a genetic variant that doubles the likelihood that people will have calcium deposits on their aortic valve. Such calcification, if it becomes severe, can cause narrowing or a blockage of the aortic ...

Recommended for you

How genes and environment interact to raise risk of congenital heart defects

October 19, 2017
Infants of mothers with diabetes have a three- to five-fold increased risk of congenital heart defects. Such developmental defects are likely caused by a combination of genetic and environmental factors. However, the molecular ...

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

Physically active white men at high risk for plaque buildup in arteries

October 17, 2017
White men who exercise at high levels are 86 percent more likely than people who exercise at low levels to experience a buildup of plaque in the heart arteries by middle age, a new study suggests.

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.