First-in-man study demonstrates the therapeutic effect of RNAi gene silencing in cancer treatment

February 11, 2013, Vall D'Hebron Institute of Oncology

A study led by Dr Josep Tabernero, the Director of Clinical Research at the Vall d'Hebron Institute of Oncology (VHIO) and Head of the Medical Oncology Department at the Vall d'Hebron University Hospital, shows for the first time that ribonucleic acid interference (RNAi) is effective in the treatment of cancer patients. Harnessing these molecules to silence genes involved in the development and growth of cancer cells is an important step forward in developing a new and more targeted type of cancer therapy.

Dr Josep Tabernero, lead author of this study, said: "This is the first evidence to show that RNAi can be administered to effectively, leading to significant tumour response."

RNAi is a gene-silencing mechanism that uses a subtype of to interfere with and silence genes. RNAi plays a vital role in normal cell development and differentiation, in cancer and viral defence, as it is powerful mechanism in the . Besides being a key natural cellular phenomenon, gene silencing shows great potential as a therapeutic device to shut down genes that have become hyperactive through cancer.

However, researchers have encountered difficulties in administering RNAi, as the molecules must penetrate cells in therapeutically effective concentrations, which in turn requires structural modifications. In the new study, led by the Vall d'Hebron Institute of Oncology (VHIO), along with several other centres and the U.S. Alnylam, scientists have developed a lipid nanoparticle approach that can deliver two of these molecules targeted against the genes encoding two key proteins involved in the development of (VEGF and KSP). This system takes the form of a (ALN-VSP) made up of RNAi molecules and lipid (LNPs).

The new paper, published in the journal Cancer Discovery, presents the results of a Phase I clinical trial, involving 41 patients with advanced cancer that had metastasised to the liver. These patients were treated with the new drug twice a week with intravenous doses of between 0.01-1.5 mg/kg.

The trial found that not only was the drug safely administered, but also presented good evidence for clinical utility. In 11 of the 37 patients, the disease either did not progress or stabilized after six months of treatment. In some cases of patients with metastasis to the liver or abdominal lymph glands, there was a complete regression of metastasis. (It should be noted that the liver typically responds better to treatment due to its excellent capacity to absorb these molecules.)

The research team performed a pharmacodynamics analysis to determine the impact of the drug on the tumours by taking biopsy samples from the patients before and after the drug was administered. This revealed the presence of the RNAi constructs in the samples, thus showing that the structurally modified molecules reached the tumour and were effective.

Having previously tested the drug on animals, this first-in-man clinical test has demonstrated that an efficient formula has been developed to transport and deliver with clinically promising results. The results will have to be confirmed and extended in additional clinical studies.

The importance of clinical research

This study, which also involved other international research centres including the Dana-Farber Cancer Institute (Boston) and the Memorial Sloan-Kettering Cancer Center (New York), plus two other Spanish centres—the Hospital Virgen del Rocío in Seville and the INCLIVA Health Research Institute in Valencia—is potentially transformative for new drug discovery that will allow targeted, population-based studies.

Knowledge of the molecular biology of cancer has expanded greatly over the past decade, leading to the identification of potential therapeutic agents for developing tumour-selective drugs.

The Research Unit for Molecular Therapy of Cancer  - "la Caixa", conducts Phase I clinical trials for new anticancer drugs. The choice of the most appropriate anticancer drug for each patient depends on a detailed analysis of the specific molecular changes in each tumour. This exciting approach entails a paradigm shift in the individualized treatment of patients.

Clinical trials play a vital role in developing new cancer treatments as they form the basis of scientifically recognised clinical research. Drugs must be proven to be both safe and efficacious in clinical trial volunteers before they can be formally approved by the appropriate government agency.

Explore further: A giant little step in cancer treatment opening up new therapeutic horizons

More information: doi:10.1158/2159-8290.CD-12-0429

Related Stories

A giant little step in cancer treatment opening up new therapeutic horizons

February 27, 2012
A study headed up by the Vall d'Hebron Institute of Oncology (VHIO) heralds a new horizon in the fight against cancer, opening up a parallel dimension to existing treatment options. The data, published today in the Journal ...

Molecular 'portraits' of tumours match patients with trials in everyday clinical practice

November 8, 2012
Researchers in France are taking advantage of the progress in genetic and molecular profiling to analyse the make-up of individual cancer patients' tumours and, using this information, assign them to particular treatments ...

RNA interference for human therapy

September 20, 2012
Leading scientists in the field investigated the potential of RNA interference (RNAi) technology as a therapeutic intervention for down-regulating the expression of disease-associated genes. Project deliverables hold significant ...

New targeted therapy for advanced prostate cancer shows anti-tumor activity in clinical trials

November 7, 2012
Few available treatment options exist once prostate cancer has spread to other parts of the body and has failed to respond to therapies that involve blocking the male hormone androgen. Patients with advanced, hormone-refractory ...

Recommended for you

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.